| 研究生: |
陳邦豪 Pang-Hao Chen |
|---|---|
| 論文名稱: |
具苯環結構以及羧酸官能基之中孔洞有機矽材料製備鈀奈米顆粒於催化之應用 Synthesis of Palladium Nanoparticles Confined in Carboxylic Acid Functionalized Phenylene-Bridged Hexagonal Periodic Mesoporous Organosilica as Efficient Catalysts |
| 指導教授: |
高憲明
Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 有序中孔洞矽 、鈀奈米金屬 |
| 外文關鍵詞: | periodic mesoporous organosilica, palladium nanoparticle |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩大部分,在第一部分研究中,奈米鈀金屬還原在有機中孔洞矽材料(PMOs)BS15Cx當中,利用化學還原劑使金屬還原速率上升,並藉由和BS15C20表面修飾的羧酸官能基,使離子鈀金屬能快速平均分散在BS15C20孔洞之中並還原奈米鈀金屬顆粒。由於BS15C20高比表面積837m2g-1和孔洞體積1.34cm3g-1,使用BS15C20載體可以提高奈米鈀金屬分散率和附載率,並藉由羧酸官能基表面的修飾來降低金屬的顆粒大小,進而提升催化活性。此外為了凸顯化學還原法的優勢,本實驗同時以熱還原的方式將鈀還原成鈀奈米金屬顆粒,來比較兩種還原方式的差異性。用於硼烷氨水解產氫的Pd(10)@BS15C20的轉換頻率(TOF)高達30.08 H2 /mol Pd/min,而活化能(Ea)僅有25.24 kJ mol-1。在此研究當中,Pd(10)@BS15C20展示了其用於從氨硼烷產生氫的高活性觸媒。
在第二部分研究中,利用化學還原法製成的Pd(y)@BS15Cx,應用在苯甲醇氧化催化反應當中。藉由BS15Cx表面上的苯環結構,增強材料與起始物苯甲醇之間的作用力,提升材料對催化反應起始物的吸附能力。在反應24小時之後,作為催化觸媒的Pd(10)@BS15C20使催化轉換率達到44.9%,且選擇性高達99.9%,在重複五次使用後仍維持在第一次使用的轉換水準,回收使用效率極高。
There are two part of my study. In the first part, Palladium nanoparticles (Pd NPs) with a particle size of about 4 nm are successfully confined within the mesopores of phenylene-bridged hexagonal periodic mesoporous organosilica, BS15Cx, functionalized with carboxylic acid (-COOH) groups. The deprotonation of -COOH groups under alkaline condition of pH 9 provides more actives sites to interact with the Pd2+ ions, and thus allow a high loading amount of Pd NPs. Two reduction methods are employed to fabricate Pd NPs: one is chemically reduction by using a mixed reagent containing NaBH4 and NH3BH3 and the other is thermal reduction method. For a comparative study, the materials generated from two different reduction techniques are then characterized by powder X-ray diffraction (XRD), nitrogen adsorption-desorption measurements, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). According to X-ray diffraction pattern and TEM image, it can be confirmed that the particle size of Pd NPs is about 3 nm and highly dispersed without aggregation. The turnover frequency (TOF) and activation energy (Ea) of Pd(10)@BS15C20 for the hydrolysis of ammonia borane reach almost 30.08 molH2 molPd-1 min-1 and 25.24 kJ mol-1. This remarkable catalytic activity for the hydrogen generation can be attributed to the ultra-small Pd NPs confined in the hexagonal-type structure of BS15Cx.
In the second part of the study, Pd(y)@BS15Cx made by chemically reduction was used in the catalytic oxidation of benzyl alcohol. The benzene ring structure on the surface of BS15Cx enhances the interaction between the material and the benzyl alcohol, and improves the adsorption ability of the material to the reactants. After 24 hours, Pd(10)@BS15C20 as a catalyst achieves the conversion rate of 44.9%, and the selectivity of 99.9%. After being recycled for five uses, it still maintains the conversion level as the first use.
1. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 2002, 54 (1), 47-58.
2. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
3. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
4. Frank, H.; Maximilian, C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
5. Yang, K.; Zhang, C.; Wang, W.; Wang, P.; Zhou, J.-P.; Liang, X.-J., pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. 2014; Vol. 11, p 34-43.
6. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
7. 黃昱源、吳嘉文, 中孔洞奈米材料之孔洞方向控制及其應用. 科學發展 2015, 513, 16-21.
8. Tarek A. Fayed, M. H. S., Marwa N. El‑Nahass, Fathy M. Hassan, Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. Chemical and Applied Biological Sciences 2014, 1 (2), 1-74.
9. D. Fennell Evans, H. W., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999; Vol. 2nd Edition.
10. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
11. Fujita, S.; Inagaki, S., Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities. Chemistry of Materials 2008, 20 (3), 891-908.
12. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
13. Liu, N.; Assink, R. A.; Brinker, C. J., Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces. Chemical Communications 2003, (3), 370-371.
14. Yang, C.-m.; Zibrowius, B.; Schuth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
15. Yang, C.-m.; Wang, Y.; Zibrowius, B.; Schuth, F., Formation of cyanide-functionalized SBA-15 and its transformation to carboxylate-functionalized SBA-15. Physical Chemistry Chemical Physics 2004, 6 (9), 2461-2467.
16. Yiu, H. H. P.; Wright, P. A., Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. Journal of Materials Chemistry 2005, 15 (35-36), 3690-3700.
17. Rosenholm, J. M.; Lindén, M., Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. Journal of Controlled Release 2008, 128 (2), 157-164.
18. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.
19. Tsai, C.-H.; Chang, W.-C.; Saikia, D.; Wu, C.-E.; Kao, H.-M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. Journal of Hazardous Materials 2016, 309, 236-248.
20. Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki, O., An orderedmesoporous organosilica hybrid material with a crystal-like wall structure. NATURE 2002, 416, 304-307.
21. Pan, Y.-C.; Wu, H.-Y.; Kao, C.-C.; Kao, H.-M.; Shieh, Y.-N.; Fey, G. T. K.; Chang, J.-H.; Tsai, H.-H. G., Model System for Solid-State NMR Study on Co-condensation Behavior of Silicon Precursors in Periodic Mesoporous Organosilicas. The Journal of Physical Chemistry C 2009, 113 (42), 18251-18258.
22. Wu, H.-Y.; Chen, C.-T.; Hung, I.-M.; Liao, C.-H.; Vetrivel, S.; Kao, H.-M., Direct Synthesis of Cubic Benzene-Bridged Mesoporous Organosilica Functionalized with Mercaptopropyl Groups as an Effective Adsorbent for Mercury and Silver Ions. J. Phys. Chem. C 2010, 114, 7021-7029.
23. Cho, E.-B.; Mandal, M.; Jaroniec, M., Periodic Mesoporous Benzene−Silicas Prepared Using Boric Acid as Catalyst. Chemistry of Materials 2011, 23 (7), 1971-1976.
24. Wu, H. Y.; Shieh, F. K.; Kao, H. M.; Chen, Y. W.; Deka Juti, R.; Liao, S. H.; Wu Kevin, C. W., Synthesis, Bifunctionalization, and Remarkable Adsorption Performance of Benzene‐Bridged Periodic Mesoporous Organosilicas Functionalized with High Loadings of Carboxylic Acids. Chemistry – A European Journal 2013, 19 (20), 6358-6367.
25. Chandra, M.; Xu, Q., A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia–borane. Journal of Power Sources 2006, 156 (2), 190-194.
26. Chandra, M.; Xu, Q., Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. Journal of Power Sources 2007, 168 (1), 135-142.
27. Xu, Q.; Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature. Journal of Power Sources 2006, 163 (1), 364-370.
28. Martis, M.; Mori, K.; Fujiwara, K.; Ahn, W.-S.; Yamashita, H., Amine-Functionalized MIL-125 with Imbedded Palladium Nanoparticles as an Efficient Catalyst for Dehydrogenation of Formic Acid at Ambient Temperature. The Journal of Physical Chemistry C 2013, 117 (44), 22805-22810.
29. Dai, H.; Su, J.; Hu, K.; Luo, W.; Cheng, G., Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane. International Journal of Hydrogen Energy 2014, 39 (10), 4947-4953.
30. Tan, H. T.; Chen, Y.; Zhou, C.; Jia, X.; Zhu, J.; Chen, J.; Rui, X.; Yan, Q.; Yang, Y., Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx. Applied Catalysis B: Environmental 2012, 119-120, 166-174.
31. Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 2014, 43 (10), 3480-524.
32. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society 2004, 126 (34), 10657-10666.
33. Chen, Y.; Lim, H.; Tang, Q.; Gao, Y.; Sun, T.; Yan, Q.; Yang, Y., Solvent-free aerobic oxidation of benzyl alcohol over Pd monometallic and Au–Pd bimetallic catalysts supported on SBA-16 mesoporous molecular sieves. Applied Catalysis A: General 2010, 380 (1-2), 55-65.
34. Chen, Y.; Guo, Z.; Chen, T.; Yang, Y., Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. Journal of Catalysis 2010, 275 (1), 11-24.
35. Yang, Q.; Liu, J.; Yang, J.; Zhang, L.; Feng, Z.; Zhang, J.; Li, C., Acid catalyzed synthesis of ordered bifunctionalized mesoporous organosilicas with large pore. Microporous and Mesoporous Materials 2005, 77 (2), 257-264.
36. Goto, Y.; Inagaki, S., Synthesis of large-pore phenylene-bridged mesoporous organosilica using triblock copolymer surfactant. Chemical Communications 2002, (20), 2410-2411.
37. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
38. Chandra, M.; Xu, Q., Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system. Journal of Power Sources 2006, 159 (2), 855-860.
39. Babak, K.; Sedigheh, A.; H., C. J.; Vitaly, B., Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA‐15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie 2006, 118 (29), 4894-4897.
40. Rakap, M.; Özkar, S., Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy 2010, 35 (3), 1305-1312.
41. Metin, O.; Şahin Ün, Ş.; Özkar, S., Water-soluble Poly(4-styrenesulfonic acid-co-maleic acid)-stabilized Ruthenium(0) and Palladium(0) Nanoclusters as Highly Active Catalysts in Hydrogen Generation from the Hydrolysis of Ammonia Borane. 2009; Vol. 34, p 6304-6313.
42. Ramachandran, P. V.; Gagare, P. D., Preparation of Ammonia Borane in High Yield and Purity, Methanolysis, and Regeneration. Inorganic Chemistry 2007, 46 (19), 7810-7817.
43. Xu, Q.; Chandra, M., A portable hydrogen generation system: Catalytic hydrolysis of ammonia–borane. Journal of Alloys and Compounds 2007, 446-447, 729-732.
44. Metin, Ö.; Kayhan, E.; Özkar, S.; Schneider, J. J., Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane. International Journal of Hydrogen Energy 2012, 37 (10), 8161-8169.
45. Xi, P.; Chen, F.; Xie, G.; Ma, C.; Liu, H.; Shao, C.; Wang, J.; Xu, Z.; Xu, X.; Zeng, Z., Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Nanoscale 2012, 4 (18), 5597-5601.
46. Zhong, W.-d.; Tian, X.-k.; Yang, C.; Zhou, Z.-x.; Liu, X.-w.; Li, Y., Active 3D Pd/graphene aerogel catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy 2016, 41 (34), 15225-15235.