跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯懿婷
Yi-Ting Ke
論文名稱: 蝴蝶蘭CONSTANS-like基因調控網路之探討
The study of Phalaenopsis CONSTANS-like gene regulatory networks
指導教授: 葉靖輝
Ching-Hui Yeh
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 168
中文關鍵詞: 蝴蝶蘭光週期晝夜節律
外文關鍵詞: photoperiodism, circadian rhythms, CONSTANS, floral transition
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物CONSTANS (CO)及CONSTANS-Like (COL)基因對於整合來自於環境中光與溫度變化訊號具有極重要的地位,但是對於這類基因如何在個體接收環境變化訊息後反應在生長變化上的調節機制尚未明瞭。本篇研究分析來自於台灣原生種白花蝴蝶蘭台灣阿嬤CONSTANS-Like 1 (Phalaenopsis aphrodite CONSTANS-Like 1, PaCOL1) 基因生理調節機制,並進一步探究其同源性基因在其他原生種蝴蝶蘭之種間差異性。PaCOL1為B-box蛋白質家族成員之一,分布於細胞質與細胞核執行其生理功能,基因表現分析顯示PaCOL1在白花蝴蝶蘭中主要分布於葉部組織,累積量會因溫度變動而改變;PaCOL1蛋白質具有日夜差異性累積分布,自傍晚至午夜為累積高峰時段。大量表現PaCOL1基因之阿拉伯芥轉殖植株於短日照 (short-day conditions: 8小時光照、23℃/16小時黑暗、23℃)環境下與野生型 (WT)植株相較有提早開花現象;但在長日照 (long-day conditions: 16小時光照、23℃/8小時黑暗、23℃) 環境栽培中的PaCOL1轉殖株與野生植株其開花時間則無顯著差異。核糖核酸測序分析 (RNA transcriptome sequencing, RNAseq) 結果顯示在短日照環境種植之PaCOL1阿拉伯芥轉殖株,其差異性表現基因數據裡與光訊息傳遞路徑上已知可促進開花相關部分基因呈現正向調控情形。酵母菌雜交實驗(Yeast two-hybrid, Y2H)與雙分子螢光互補試驗 (Bimolecular Fluorescence Complementation, BiFC)顯示PaCOL1蛋白質具有與其他蛋白質鍵結能力,可與阿拉伯芥生理時鐘調節蛋白質AtCCA1、開花抑制因子AtFLC產生蛋白質互動反應。阿拉伯芥cca1.lhy雙基因突變株導入PaCOL1基因轉殖株之基因互補實驗,觀察到cca1與lhy雙基因突變株失去基因而產生的光無感反應可因PaCOL1基因表達而部份恢復其對光反應機制,造成植株形態發育與開花時間改變,此結果證實PaCOL1為一參與光週期調節相關基因。本篇研究亦發現PaCOL1同源基因存在於姬蝴蝶蘭 (P. equestris)、大葉蝴蝶蘭 (P. bellina)及螢光蝴蝶蘭 (P. violacea),且PaCOL1蛋白質可與蝴蝶蘭中過氧化物 (ROS) 清除者PaAPX及開花素PaFT等蛋白質進行交互作用,顯示PaCOL1可能也參與逆境訊息之整合而影響蘭花的生理調節機制。


    CONSTANS (CO) and CONSTANS-Like (COL) genes play important roles in coalescing signals from photoperiod and temperature pathways. However, the mechanism of CO and COLs involved in regulating the developmental stage transition and photoperiod/temperature senescing remains unclear. In this study, we identified a COL ortholog gene from the Taiwan native orchid Phalaenopsis aphrodite (P. aphrodite). The P. aphrodite CONSTANS-Like 1 (PaCOL1) belongs to the B-box protein family and functions in the nucleus and cytosol. Expression profile analysis revealed that PaCOL1 was significantly expressed in leaves, but its accumulation was over-repressed during environmental temperature shift. We found a differential profile for PaCOL1 accumulation, with peak accumulation at late afternoon and at the middle of the night. Arabidopsis with PaCOL1 overexpression showed earlier flowering under short-day (SD) conditions (8-h/23℃ light and 16-h/23℃ dark) but no difference under long-day (LD) conditions (16-h/23℃ light and 8-h/23℃ dark). Transcriptome sequencing revealed several genes involved in flowering regulation of the photoperiod pathway were upregulated in PaCOL1-overexpressing Arabidopsis plants. Yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) analysis revealed that PaCOL1 could interact with a crucial clock-associated regulator, AtCCA1, and a flowering repressor, AtFLC. Expressing PaCOL1 in cca1.lhy double mutant partially reversed the mutant flowering time under photoperiod treatment, which confirms the role of PaCOL1 function in the rhythmic associated factors for modulating flowering. We found PaCOL1 homologs existed in other 3 Phalaenopsis plants: P. equestris, P. bellina and P. violacea. PaCOL1 showed the potential interaction with two Phalaenopsis native proteins, the florigen PaFT and a ROS scavenger PaAPX. These evidences shedding the light on PaCOL1 may function in photoperiodical and stress signaling modulation of orchid physiological regulatory networks.

    中文摘要 ..i English Abstract ..ii Table of Contents ..iii List of Figures ..iv List of Supplementary Materials ..v Abbreviations ..vi The study of Phalaenopsis CONSTANS-like gene regulatory networks..1 1. Introduction..2 2. Materials and methods..5 3. Results..17 4. Discussions..26 5. Conclusions..31 References..32 Appendix I. Functional diversity analysis of OsG3LEA proteins..110 Appendix II. List publications..155

    Aceto S, Gaudio L (2011) The MADS and the beauty: genes Involved in the development of
    orchid flowers. Curr Genomics 12: 342-356
    Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA (2001) Reciprocal regulation
    between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293: 880-
    883
    Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY
    in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12: 757-761
    An FM, Hsiao SR, Chan MT (2011) Sequencing-based approaches reveal low ambient
    temperature-responsive and tissue-specific microRNAs in phalaenopsis orchid. PLoS One
    6: e18937
    Ballerini ES, Kramer EM (2011) In the light of evolution: a reevaluation of conservation in the
    CO-FT Regulon and its role in photoperiodic regulation of flowering time. Front Plant Sci
    2: 81
    Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125: 655-664
    Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A,
    Lifschitz E (2006) The CCAAT binding factor can mediate interactions between
    CONSTANS-like proteins and DNA. Plant J 46: 462-476
    Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower:
    enabling, promoting, and resetting. Plant Cell, pp S18-31
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities
    of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254
    Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z,
    Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A,
    Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su
    YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ (2015)
    The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47: 65-72
    Cao Y, Han Y, Meng D, Li D, Jiao C, Jin Q, Lin Y, Cai Y (2017) B-BOX genes: genome-wide
    identification, evolution and their contribution to pollen growth in pear (Pyrus
    bretschneideri Rehd.). BMC Plant Biol 17: 156
    Chao YT, Yen SH, Yeh JH, Chen WC, Shih MC (2017) Orchidstra 2.0-A Transcriptomics
    Resource for the Orchid Family. Plant Cell Physiol 58: e9
    Chen WH, Tseng YC, Liu YC, Chuo CM, Chen PT, Tseng KM, Yeh YC, Ger MJ, Wang HL
    (2008) Cool-night temperature induces spike emergence and affects photosynthetic
    efficiency and metabolizable carbohydrate and organic acid pools in Phalaenopsis
    aphrodite. Plant Cell Rep 27: 1667-1675
    Cheng XF, Wang ZY (2005) Overexpression of COL9, a CONSTANS-LIKE gene, delays
    flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J 43: 758-
    768
    Chin DC, Shen CH, SenthilKumar R, Yeh KW (2014) Prolonged exposure to elevated
    temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1
    and subsequent reduction of the ascorbate redox ratio in Oncidium hybrid orchid. Plant
    Cell Physiol 55: 2164-2176
    Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B (2016) Genomic organization,
    phylogenetic and expression analysis of the B-BOX gene family in tomato. Front Plant Sci
    7: 1552
    Chou MC and Yang CH (1998) FLD interacts with genes that affect different developmental
    phase transitions to regulate Arabidopsis shoot development. Plant J 4: 231–242
    33
    Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated
    transformation of Arabidopsis thaliana. Plant J 16: 735-743
    Crocco CD, Botto JF (2013) BBX proteins in green plants: insights into their evolution,
    structure, feature and functional diversification. Gene 531: 44-52
    Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional
    analysis of genes in planta. Plant Physiol 133: 462-9
    Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its
    circadian oscillator function in Arabidopsis. Proc Natl Acad Sci U S A 101: 3292-3297
    Dixon LE, Karsai I, Kiss T, Adamski NM, Liu Z, Ding Y, Allard V, Boden SA, Griffiths S (2019)
    VERNALIZATION1 controls developmental responses of winter wheat under high
    ambient temperatures. Development 146
    Enoki S, Fujimori N, Yamaguchi C, Hattori T, Suzuki S (2017) High constitutive
    overexpression of glycosyl hydrolase family 17 delays floral transition by enhancing FLC
    expression in transgenic Arabidopsis. Plants (Basel) 6
    Farre EM, Harmer SL, Harmon FG, Yanovsky MJ, Kay SA (2005) Overlapping and distinct
    roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15: 47-54
    Filichkin SA, Breton G, Priest HD, Dharmawardhana P, Jaiswal P, Fox SE, Michael TP, Chory
    J, Kay SA, Mockler TC (2011) Global profiling of rice and poplar transcriptomes
    highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS
    One 6: e16907
    Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci
    19: 460-470
    Gil KE, Park MJ, Lee HJ, Park YJ, Han SH, Kwon YJ, Seo PJ, Jung JH, Park CM (2017)
    Alternative splicing provides a proactive mechanism for the diurnal CONSTANS
    dynamics in Arabidopsis photoperiodic flowering. Plant J 89: 128-140
    Gendron JM, Pruneda-Paz JL, Doherty CJ, Gross AM, Kang SE, Kay SA (2012) Arabidopsis
    circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci
    U S A 109: 3167-3172
    Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, Holt BF, 3rd,
    Mantovani R (2017) CONSTANS imparts DNA sequence specificity to the histone fold
    NF-YB/NF-YC dimer. Plant Cell 29: 1516-1532
    Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic
    control pathways produces short-day flowering in rice. Nature 422: 719-722
    Holtan HE, Bandong S, Marion CM, Adam L, Tiwari S, Shen Y, Maloof JN, Maszle DR, Ohto
    MA, Preuss S, Meister R, Petracek M, Repetti PP, Reuber TL, Ratcliffe OJ, Khanna R
    (2011) BBX32, an Arabidopsis B-Box protein, functions in light signaling by suppressing
    HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiol 156:
    2109-2123
    Huang J, Zhao X, Weng X, Wang L, Xie W (2012) The rice B-box zinc finger gene family:
    genomic identification, characterization, expression profiling and diurnal analysis. PLoS
    One 7: e48242
    Jang S (2015) Functional characterization of PhapLEAFY, a FLORICAULA/LEAFY ortholog
    in Phalaenopsis aphrodite. Plant Cell Physiol 56: 2234-2247
    Jang S, Choi SC, Li HY, An G, Schmelzer E (2015) Functional characterization of Phalaenopsis
    aphrodite flowering genes PaFT1 and PaFD. PLoS One 10: e0134987
    Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, Deng XW, Valverde F, Coupland G
    (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a
    photoperiodic flowering response. Embo J 27: 1277-1288
    Ke YT, Lu CA, Wu SJ, Yeh CH (2016) Characterization of Rice Group 3 LEA Genes in
    Developmental Stages and Under Abiotic Stress. Plant Mol Biol Rep 34: 1003-1015
    34
    Khanna R, Kronmiller B, Maszle DR, Coupland G, Holm M, Mizuno T, Wu SH (2009) The
    Arabidopsis B-box zinc finger family. Plant Cell 21: 3416-3420
    Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK (2008) OsCO3, a CONSTANS-LIKE
    gene, controls flowering by negatively regulating the expression of FT-like genes under
    SD conditions in rice. Planta 228: 355-365
    Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and
    genome manipulation. Annu Rev Biochem 79: 213-231
    Klug A, Schwabe JW (1995) Protein motifs 5. Zinc fingers. Faseb J 9: 597-604
    Kobayashi M, Takato H, Fujita K, Suzuki S (2012) HSG1, a grape Bcl-2-associated athanogene,
    promotes floral transition by activating CONSTANS expression in transgenic Arabidopsis
    plant. Mol Biol Rep 39: 4367-4374
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice
    ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1
    under short-day conditions. Plant Cell Physiol 43: 1096-1105
    Kong X, Luo X, Qu GP, Liu P, Jin JB (2017) Arabidopsis SUMO protease ASP1 positively
    regulates flowering time partially through regulating FLC stability. J Integr Plant Biol 59:
    15-29
    Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown
    JW, Shaw PJ (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of
    exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia.
    Plant Cell 21: 1592-1606
    Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JH, Dijkwel PP (2012)
    CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress
    responses. Proc Natl Acad Sci U S A 109: 17129-17134
    Lazaro A, Valverde F, Pineiro M, Jarillo JA (2012) The Arabidopsis E3 ubiquitin ligase HOS1
    negatively regulates CONSTANS abundance in the photoperiodic control of flowering.
    Plant Cell 24: 982-999
    Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between
    the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant
    Cell 13: 2175-2190
    Li C, Gu L, Gao L, Chen C, Wei CQ, Qiu Q, Chien CW, Wang S, Jiang L, Ai LF, Chen CY,
    Yang S, Nguyen V, Qi Y, Snyder MP, Burlingame AL, Kohalmi SE, Huang S, Cao X, Wang
    ZY, Wu K, Chen X, Cui Y (2016) Concerted genomic targeting of H3K27 demethylase
    REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet 48: 687-693
    Li DM, L FB, Zhu GF, Sun YB, Liu HL, Liu JW, Wang Z (2014) Molecular characterization
    and functional analysis of a Flowering locus T homolog gene from a Phalaenopsis orchid.
    Genet Mol Res 13: 5982-5994
    Liu C, Teo ZW, Bi Y, Song S, Xi W, Yang X, Yin Z, Yu H (2013) A conserved genetic pathway
    determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24: 612–622
    Liu H, Dong S, Sun D, Liu W, Gu F, Liu Y, Guo T, Wang H, Wang J, Chen Z (2016)
    CONSTANS-Like 9 (OsCOL9) interacts with receptor for activated C-Kinase
    1(OsRACK1) to regulate blast resistance through salicylic acid and ethylene signaling
    pathways. PLoS One 11: e0166249
    Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, Lian HL, Wang L, Yang HQ (2008) COP1-mediated
    ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in
    Arabidopsis. Plant Cell 20: 292-306
    Lokhande SD, Ogawa K, Tanaka A, Hara T (2003) Effect of temperature on ascorbate
    peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light
    conditions. J Plant Physiol 160: 57-64
    35
    Lopez-Gonzalez L, Mouriz A, Narro-Diego L, Bustos R, Martinez-Zapater JM, Jarillo JA,
    Pineiro M (2014) Chromatin-dependent repression of the Arabidopsis floral integrator
    genes involves plant specific PHD-containing proteins. Plant Cell 26: 3922-3938
    Lu X, Li J, Chen H, Hu J, Liu P, Zhou B (2017) RNA-seq analysis of apical meristem reveals
    integrative regulatory network of ROS and chilling potentially related to flowering in
    Litchi chinensis. Sci Rep 7: 10183
    Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland
    G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian
    rhythms in Arabidopsis. Dev Cell 2: 629-641
    Mizoguchi T, Yoshida R (2009) Punctual coordination: switching on and off for flowering
    during a day. Plant Signal Behav 4: 113-115
    Mockler TC, Yu X, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM,
    Ecker JR, Chory J, Lin C (2004) Regulation of flowering time in Arabidopsis by K
    homology domain proteins. Proc Natl Acad Sci U S A 101: 12759-12764
    Mulekar JJ, Bu Q, Chen F, Huq E (2012) Casein kinase II alpha subunits affect multiple
    developmental and stress-responsive pathways in Arabidopsis. Plant J 69: 343-354
    Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassays with
    tobacco tissue culture. Physiol Plantarum 15: 473-497
    Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks.
    Curr Biol 22: R648-657
    Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T (2005) The Arabidopsis pseudoresponse
    regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock
    function. Plant Cell Physiol 46: 609-619
    Nasim Z, Fahim M, Ahn JH (2017) Possible role of MADS AFFECTING FLOWERING 3 and
    B-BOX DOMAIN PROTEIN 19 in flowering time regulation of Arabidopsis mutants with
    defects in nonsense-mediated mRNA decay. Front Plant Sci 8: 191
    Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P,
    Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic
    plasticity in a changing climate. Trends Plant Sci 15: 684-692
    Ordoñez-Herrera N, Trimborn L, Menje M, Henschel M, Robers L, Kaufholdt D, Hänsch R,
    Adrian J, Ponnu J, Hoecker U (2018) The Transcription Factor COL12 Is a Substrate of
    the COP1/SPA E3 Ligase and Regulates Flowering Time and Plant Architecture. Plant
    Physiol 176: 1327-1340
    Ogiso E, Takahashi Y, Sasaki T, Yano M, Izawa T (2010) The role of casein kinase II in
    flowering time regulation has diversified during evolution. Plant Physiol 152: 808-820
    Pose D, Verhage L, Ott F, Yant L, Mathieu J, Angenent GC, Immink RG, Schmid M (2013)
    Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:
    414–417
    Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of
    flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics 140: 345-356
    Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of
    Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger
    transcription factors. Cell 80: 847-857
    Ream TS, Woods DP, Schwartz CJ, Sanabria CP, Mahoy JA, Walters EM, Kaeppler HF,
    Amasino RM (2014) Interaction of photoperiod and vernalization determines flowering
    time of Brachypodium distachyon. Plant Physiol 164: 694-709
    Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G (1998) The late
    elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the
    photoperiodic control of flowering. Cell 93: 1219-1229
    36
    Shannon S, Meeks-Wagner DR (1991) A Mutation in the Arabidopsis TFL1 Gene Affects
    Inflorescence Meristem Development. Plant Cell 3: 877-892
    Shibuta M, Abe M (2017) FE controls the transcription of downstream flowering regulators
    through two distinct mechanisms in leaf phloem companion cells. Plant Cell Physiol 58:
    2017-2025
    Shrestha R, Gomez-Ariza J, Brambilla V, Fornara F (2014) Molecular control of seasonal
    flowering in rice, arabidopsis and temperate cereals. Ann Bot 114: 1445-1458
    Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:
    285-289
    Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperaturesensing
    in leaves. Trends Plant Sci 18: 575-583
    Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC (2011) De
    novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite
    transcriptome. Plant Cell Physiol 52: 1501-1514
    Sun C, Chen D, Fang J, Wang P, Deng X, Chu C (2014) Understanding the genetic and
    epigenetic architecture in complex network of rice flowering pathways. Protein Cell 5:
    889-898
    Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva
    NT, Morris JH, Bork P, Jensen LJ, Mering C (2019) STRING v11: protein-protein
    association networks with increased coverage, supporting functional discovery in genomewide
    experimental datasets. Nucleic Acids Res 47: D607-D613
    Tan J, Jin M, Wang J, Wu F, Sheng P, Cheng Z, Wang J, Zheng X, Chen L, Wang M, Zhu S,
    Guo X, Zhang X, Liu X, Wang C, Wang H, Wu C, Wan J (2016) OsCOL10, a CONSTANSLike
    gene, functions as a flowering time repressor downstream of Ghd7 in Rice. Plant Cell
    Physiol 57: 798-812
    Toda Y, Kudo T, Kinoshita T, Nakamichi N (2019) Evolutionary insight into the clockassociated
    PRR5 transcriptional network of flowering plants. Sci Rep 9: 2983
    Tripathi P, Carvallo M, Hamilton EE, Preuss S, Kay SA (2017) Arabidopsis B-BOX32 interacts
    with CONSTANS-LIKE3 to regulate flowering. Proc Natl Acad Sci U S A 114: 172-177
    Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING
    LOCUS T moves center stage. Annu Rev Plant Biol 59: 573-594
    Wagner D, Meyerowitz EM (2002) SPLAYED, a novel SWI/SNF ATPase homolog, controls
    reproductive development in Arabidopsis. Curr Biol 12: 85-94
    Wang CQ, Guthrie C, Sarmast MK, Dehesh K (2014) BBX19 interacts with CONSTANS to
    repress FLOWERING LOCUS T transcription, defining a flowering time checkpoint in
    Arabidopsis. Plant Cell 26: 3589-3602
    Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A Myb-related
    transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.
    Plant Cell 9: 491-507
    Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006)
    CONSTANS and the CCAAT box binding complex share a functionally important domain
    and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971-2984
    Woods DP, McKeown MA, Dong Y, Preston JC, Amasino RM (2016) Evolution of
    VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering. Plant
    Physiol 170: 2124-2135
    Yamamoto K, Suzuki T, Aihara Y, Haga K, Sakai T, Nagatani A (2014) The phototropic
    response is locally regulated within the topmost light-responsive region of the Arabidopsis
    thaliana seedling. Plant Cell Physiol 55: 497-506
    37
    Yan H, Marquardt K, Indorf M, Jutt D, Kircher S, Neuhaus G, Rodriguez-Franco M (2011)
    Nuclear localization and interaction with COP1 are required for STO/BBX24 function
    during photomorphogenesis. Plant Physiol 156: 1772-1782
    Yang CH and Chou MC (1999) FLD Interacts with CO to Affect both Flowering Time and
    Floral Initiation in Arabidopsis thaliana. Plant and Cell Physiol 40: 647–650
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K,
    Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity
    quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene
    CONSTANS. Plant Cell 12: 2473-2484
    Yeh CH, Yeh KW, Wu SH, Chang PFL, Chen YM, Lin CY (1995) A recombinant rice 16.9-kDa
    heat-shock protein can provide thermoprotection in-vitro. Plant Cell Physio 36: 1341-1348
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system
    for transient gene expression analysis. Nat Protoc 2: 1565-1572
    Zeevaart JA (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11: 541-547
    Zeng F, Biligetu B, Coulman B, Schellenberg MP, Fu YB (2017) RNA-Seq analysis of gene
    expression for floral development in crested wheatgrass (Agropyron cristatum L.). PLoS
    One 12: e0177417
    Zhou R, Liu P, Li D, Zhang X, Wei X (2018) Photoperiod response-related gene SiCOL1
    contributes to flowering in sesame. BMC Plant Biol 18: 343

    QR CODE
    :::