| 研究生: |
楊添福 Tien-Fu Yang |
|---|---|
| 論文名稱: |
高性能質子交換膜燃料電池膜電極組之研究 The research of high performance proton exchange membrane fuel cell electrode assemblies |
| 指導教授: |
洪勵吾
Lih-Wu Hourng |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 燃料電池 、膜電極組 、觸媒層 |
| 外文關鍵詞: | fuel cell, membrane electrode assembly, catalyst layer |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統質子交換膜燃料電池膜電極組結構,由一個質子交換膜為中心,以三明治形式依序往外,兩面各夾一層Pt/C-40觸媒層(白金金屬含量40 wt%),其觸媒層外再各夾一層氣體擴散層,組合成五層的膜電極組(結構a)。本研究藉由修改傳統膜電極組結構包含:(1)將Pt/C-80觸媒漿料(白金金屬含量80 wt%)塗佈於Pt/C-40觸媒層與質子交換膜之間,形成七層的膜電極組(結構b);(2)將Pt/C-80觸媒漿料塗佈於Pt/C-40觸媒層與氣體擴散層之間,形成七層的膜電極組(結構c);(3)將Pt/C-80與Pt/C-40觸媒漿料混合,塗佈於質子交換膜與氣體擴散層之間,形成五層的膜電極組(結構d)。在固定的白金金屬載量中,經研究發現調整型膜電極組結構b、結構c和結構d,均比傳統型膜電極組結構a有更好的電池性能。其性能提升之主要原因,推論為觸媒層厚度降低,減少陽極端H+離子傳遞至陰極端的距離(增加導離子度),使得與陰極端的反應縮短,並降低質子傳遞阻抗。
本文亦藉由二維數值模擬分析之觀點,探討影響性能之原因。根據模擬結果顯示,調整型膜電極組電池性能比傳統型較佳的結果與實驗相符。主要原因則包含:質子傳導度、開路電壓,及觸媒層厚度等。同時亦觀察到不同膜電極組之水分佈情形;當Pt/C-80觸媒層介於氣體擴散層與Pt/C-40觸媒層之間(即結構c膜電極組),可發現膜電極組內有較多的液態水堆積。
The conventional 5-layer membrane electrode assembly (MEA) consists of a proton exchange membrane (PEM) locating at its center, two layers of Pt/C-40 (Pt content 40 wt%) locating next on both surfaces of PEM, and two gas diffusion layers (GDL) locating next on the outer surfaces of Pt/C layers (structure-a MEA). In this paper, we report three modified MEAs consisting of Pt/C-40 (Pt content 40 wt%) and Pt/C-80 (Pt content 80 wt%) catalysts. These are: (1) 7-layer structure-b MEA with a thin Pt/C-80 layer locating between Pt/C-40 layer and PEM; (2) 7-layer structure-c MEA with a thin Pt/C-80 layer locating between Pt/C-40 layer and GDL; and (3) 5-layer structure-d MEA with Pt/C-40 and Pt/C-80 mixing homogeneously and locating between PEM and GDL. Under a fixed Pt loading, we find structure-b, -c, and -d MEAs with 20 ~ 40 wt% Pt contributed from Pt/C-80 have better fuel cell performance than structure-a MEA consisting only of Pt/C-40. The reasons are attributed to the better feasibility for H2/O2 gas to reach Pt particles and lower proton transport resistance in catalyst layers of the modified MEAs than structure-a MEA.
On the other hand, a two-dimensional, multi-phase, non-isothermal numerical model was used to investigate the effect of the high performance catalyst layer design. Simulation results show that substituting part of the Pt/C 40 wt% with Pt/C 80 wt% increases the cell performance. It was found that factors including proton conductivity, open circuit voltage and sub-layer thickness have a significant impact on overall cell performance. Different water distribution for different MEA designs was also observed in the simulation results. More liquid water accumulation inside the MEA is seen when the Pt/C 80 wt% sub-layer is next to the gas diffusion layer (structure-c MEA).
[1] Taiwan Power Company website: http://www.taipower.com.tw.
[2] U.S. Department of Energy website: http://energy.gov/eere/fuelcells/comparison-fuel-cell-technologies.
[3] 衣寶廉,“燃料電池-原理與應用”,五南文化事業機構,2007。
[4] C.H.S. Brian, H. Angelika, “Materials for fuel-cell technologies,” Nature, 414, 345-352, 2001.
[5] K.D. Nam, “Oxygen reduction reaction of surface controlled niobium oxide-based materials as cathodes for PEFC,” Yokohama National University, 2010.
[6] M. Watanabe in Handbook of Fuel Cells, Ed. by W. Vielstich, A. Lamm, H.A. Gasteiger, vol 2. chap. 28; A. Lasita in ibid, chap. 29; S. Mukerjee, S. Srinivasan, in ibid, chap. 34.
[7] V. Mehta, J.S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, 114, 32-53, 2003.
[8] S.D. Thompson, L.R. Jordan, M. Forsyth, “Platinum electrodeposition for polymer electrolyte membrane fuel cells,” Electrochimica Acta, 46, 1657-1663, 2001.
[9] Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, S. Holdcroft, “Functionally graded cathode catalyst layers for polymer electrolyte fuel cells,” Journal of Electrochemical Society, 151(7), A950-957, 2004.
[10] Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Audreaus, M. Eikerling, Z. Liu, S. Holdcroft, “Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. II. Experimental study of the effect of Nafion distribution,” Journal of Electrochemical Society, 152(6), A1171-1179, 2005.
[11] M.S. Wilson, S. Gottesfeld, “High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells,” Journal of Electrochemical Society, 139, L28-30, 1992.
[12] M.S. Wilson, S. Gottesfeld, “Thin-film catalyst layers for polymer electrolyte fuel cell electrodes,” Journal of Applied Electrochemistry, 22, 1-7, 1992.
[13] S. Hirano, J. Kim, S. Srinivasan, “High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes,” Electrochimica Acta, 42, 1587-1593, 1997.
[14] C.A. Cavalcam, J.H. Arps, M. Murphy, US Pat. 63,000,000B1, Oct 9, 2001.
[15] S. Lister, G. McLean, “PEM fuel cell electrodes,” Journal of Power Sources, 130, 61-76, 2006.
[16] J. St. Pierre, D.P. Wilkinson, S.A. Campbell, US Patent 6,896,792 B2, 2005.
[17] S.G. Yan, J.C. Doyle, US Patent 0163920 A1, 2005.
[18] S.G. Yan, B. Sompalli, US Patent 0164072 A1, 2005.
[19] D. Olmeijer, US Patent 0068268 A1, 2006.
[20] J. L. Larminie, A. Dicks, Fuel Cells Systems Explained, Jhon Wiley & Sons, Ltd., p.6, Figure 1.6, 2000.
[21] F. Barbir, PEM Fuel Cells, Elsevier Academic Press, MA, USA, chapter 4, page 90, Table 4, 2005.
[22] E-Tek Co. website: www.etek-inc.com.
[23] E.A. Ticianelli, C.R. Derouin, S. Srinivasan, “Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells,” Journal of Electroanalytical Chemistry, 251, 275-295, 1988.
[24] S. Mukerjee, S. Srinivasan, A.J. Appleby, “Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells,” Electrochimica Acta, 38(12), 1661-1669, 1993.
[25] T. Berning, D.M. Lu, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power Sources, 106, 284-294, 2002.
[26] C.H. Cheng, K. Fei, C.W. Hong, “Computer simulation of hydrogen proton exchange membrane and direct methanol fuel cells,” Computer & Chemical Engineering, 31, 247-257, 2007.
[27] L. Marr, X. Li, “Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell,” Journal of Power Sources, 77, 17-27, 1999.
[28] Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, S. Holdcroft, “Functional graded cathode catalyst layers for polymer electrolyte fuel cells I. theoretical modeling,” Journal of Electrochemical Society, 151, A950-A957, 2004.
[29] D. Song, Q. Wang, Z. Liu, M. Eikerling, Z. Xie, T. Navessen, S. Holdcroft, “A method for optimizing distributions of Nafion and Pt in cathode catalyst layers of PEM fuel cells,” Electrochimica Acta, 50, 3347-3358, 2005.
[30] H. Wu, X. Li, P. Berg, “On the modeling of water transport in polymer electrolyte membrane fuel cells,” Electrochimica Acta, 54, 6913-1927, 2009.
[31] K. Broka, P. Ekdunge, “Modelling the PEM fuel cell cathode,” Journal of Applied Electrochemistry, 27, 281-289, 1997.
[32] N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von SPakovsky, “A two-dimensional computational model of a PEMFC with liquid water transport,” Journal of Power Sources, 128, 173-184, 2004.
[33] W. Sun, B.A. Peppley, K. Karan, “An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters,” Electrochimica Acta, 50, 3359-3374, 2005.
[34] G. Lin, T.V. Nguyen, “A two-dimensional two-phase model of a PEM fuel cell,” Journal of Electrochemical Society, 153, A372-A382, 2006.
[35] Q. Ye, T.V. Nguyen, “Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions,” Journal of Electrochemical Society, 154, B1242-B1251, 2007.
[36] C.Y. Jung, W.J. Kim, S.C. Yi, “Computational analysis of polarizations in membrane electrode assembly for proton exchange membrane fuel cells,” Journal of Membrane Science, 341, 5-10, 2009.
[37] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model,” Journal of Electrochemical Society, 138, 2334-2342, 1991.
[38] Q. Ye, T.V. Nguyen, “Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions,” Journal of Electrochemical Society, 154, B1242-B1251, 2007.
[39] COMSOL Inc., User’s Manual, Version 3.5a, 2008.