| 研究生: |
紀進睿 Chin-Jui Chi |
|---|---|
| 論文名稱: |
改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制 Improved PI and fuzzy controller realizes position control of piezoelectric ceramic motor |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | PI控制 、可變結構控制 、模糊控制 、壓電陶瓷馬達 、超音波馬達 、積分終結 |
| 外文關鍵詞: | piezoelectric ceramic motor, fuzzy control, PI control, variable structure control, ultrasonic motor, integral windup |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對壓電陶瓷馬達(Piezoelectric Ceramic Motor)系統之非線性時變的特性,為了因應不同之應用與使用需求下,設計了兩種控制器以應用於壓電陶瓷馬達定位與追蹤控制:一為可變結構比例積分(Variable Structure Proportional Integral, VSPI)控制器,其中VSPI為以PI控制架構改良之控制器,在具備PI架構簡單易實現的優點下,又可改善傳統PI控制因積分器產生之積分終結(Integral Windup)所造成的飽和現象,並消除過大的過超量,但缺點是參數要以試誤法來調整。
另一為模糊邏輯(Fuzzy Logic)控制器,而模糊邏輯控制器因控制法則是由專家經驗所得,所以不需像VSPI控制器在控制環境有重大改變時,需重新調整控制器之參數,因此,在實際控制上有更好的穩定性與適應度。且論文中針對壓電陶瓷馬達系統在控制上可能遇到的問題,提出了另一種改良式的模糊控制架構,以更簡單的方法來達到精密位置控制的目的。實驗結果顯示,此兩種控制架構都可在實際控制應用上實現,且控制效果都有其個別之優點。
According to nonlinear and time variance character of piezoelectric ceramic motor, we accomplish the orientation and tracking control of piezoelectric ceramic motor for different application and demand. In the thesis, there are two controllers used to control the piezoelectric ceramic motor. One is VSPI (Variable Structure Proportional Integral) controller and the other one is fuzzy logic controller. The VSPI controller ameliorates from the PI controller can be realized easily. Besides, it can improve phenomenon of saturation caused by Integral Windup and eliminates undue overshoot, which occur in traditional PI controller.
The fuzzy logic controller doesn’t have to readjust parameters while environment changing significantly due to its control rules are based on expert’s experience. Thus, fuzzy logic controller can provide better stability and adaptability in practical control. Also, we propose an improved fuzzy control scheme to achieve accurate orientation easily to deal with the problem that the piezoelectric ceramic motor might meet. At last, the experiment result shows both of the proposed control schemes are working extremely well in practical control.
[1] S. Ueha, Y. Tomikawa, M. Kurosawa, and N. Nakamura, “Ultrasonic Motors Theory and Applications,” Oxford: Clarendon Press, 1993.
[2] T. Sashida, and T. Kenjo, “An Introduction to Ultrasonic Motors,” Oxford: Clarendon Press, 1993.
[3] 林法正、魏榮宗、段柔勇, “超音波馬達之驅動與智慧型控制”, 滄海書局, 1999。
[4] S. Segawa, T. Ushioda, and H. Inada, “Ultrasonic piezomotor equipped with a piezoelectric rotary encoder,” IEEE Ultrasonics Symposium, Vol. 3, pp. 1205–1209, 1990.
[5] T. Senjyu, S. Yokada, H. Miyazato, and K. Uezato, “Speed control of ultrasonic motors by adaptive control with a simplified mathematical model,”IEE Proceedings, Electric Power Applications, Vol. 145, pp. 180-184, May 1998.
[6] N. W., Hagood IV, and A. J. McFarland, “Modeling of a piezoelectric rotary ultrasonic motor,”IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 42, pp. 210-224, March 1995.
[7] O. Yu. Zharii, “Modeling of a mode conversion ultrasonic motor in the regime of slip,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 40, pp. 411-417, July 1993.
[8] H. Zhou, K. K. Tan, and T. H. Lee, “Micro-positioning of linear piezoelectric motors based on a learning nonlinear PID controller,” Proceedings of the 39th IEEE Conference on, Decision and Control, Vol. 1, pp. 913-918, 2000.
[9] U. Itkis, “Control System of Variable Structure,” New York: John Wieley, 1976.
[10] V. I. Utkin, “Sliding Modes and Their Application in Variable Structure System,” Moscow: MIR publishers, 1978.
[11] F. J. Lin, and L. C. Kuo, “Driving circuit for ultrasonic motor servo drive with variable-structure adaptive model-following control,” IEE Proceedings, Electric Power Applications, Vol. 144, pp. 199-206, May 1997.
[12] T. Senjyu, S. Yokoda, Y. Gushiken, and K. Uezato, “Position control of ultrasonic motors using variable structure type adaptive control,” 29th Annual IEEE, Power Electronics Specialists Conference, Vol. 2, pp. 1860-1866, 1998.
[13] T. Senjyu, S. Yokoda, and K. Uezato, “Speed control of ultrasonic motors by discrete time variable structure control,” Power Conversion Conference, Vol. 2, pp. 595-600, 1997.
[14] 王文俊, “認識Fuzzy”, 全華科技圖書股份有限公司, 1997。
[15] Y. Izuno, T. Izumi, H. Yasutsune, E. Hiraki, and M. Nakaoka, “Speed tracking servo control system incorporating traveling-wave-type ultrasonic motor and feasible evaluations,” IEEE Trans. on Industry Applications, Vol. 34 pp. 126-132 Jan.-Feb. 1998.
[16] F. J. Lin, “Fuzzy adaptive model-following position control for ultrasonic motor,” IEEE Trans. on Power Electronics, Vol. 12, no. 2, pp. 261-268, March 1997.
[17] Y. Izuno, and M. Nakaoka, “High performance and high precision ultrasonic motor-actuated positioning servo drive system using improved fuzzy-reasoning controller,” 25th Annual IEEE, Power Electronics Specialists Conference, Vol. 2, pp. 1269-1274, 1994.
[18] Y. Izuno, R. Takeda, and M. Nakaoka, “New fuzzy reasoning-based high-performance speed/position servo control schemes incorporating ultrasonic motor,” IEEE Trans. on Industry Applications, Vol. 28 no. 3, pp. 613-618, May-June 1992.
[19] Z. Jona, “United States Patent,” pn: 5,453,653, Sep. 26, 1995.
[20] R. Briot, M. M. Guiliemot-Amadei, A. Pelourson, and C. Garabedian, “Generators for piezoelectric motors,” Meas. Sci. Technol., pp. 938-946, 1993.
[21] A. Manabu, and T. Yoshiro, “Ultrasonic motors using longitudinal and bending multimode vibrators with mode coupling caused by external additional asymmetry,” J. Phys., Applications, Vol. 32, no. 9B, pp. 4190-4193, Jan. 1993.
[22] “HR1 Ultrasonic Motor User Manual,” Nanomotion LTD.
[23] “AB1 Driver Box User Manual,” Nanomotion LTD.
[24] 陳永平, “可變結控制設計”, 全華科技圖書股份有限公司, 1999。
[25] C. Xinkai, S. Komada, and T. Fukuda,“Design of a nonlinear disturbance observer,” IEEE Trans. on Industrial Electronics, Vol. 47, pp. 429-437, April 2000.
[26] K. Jezernik, “VSS control of unity power factor,” IEEE Trans. on Industrial Electronics, Vol. 46, pp. 325-332, April 1999.
[27] W. C. Su, and C. C. Tsai, “Discrete-time VSS temperature control for a plastic extrusion process with water cooling systems,” IEEE Trans. on Control Systems Technology, Vol. 9, pp. 618-623, July 2001.
[28] C. M. Liaw, Y. M. Lin, and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. on Industrial Electronics, Vol. 48, pp. 1136-1147, Dec. 2001.
[29] S. Kristiansson, and B. Lennartson, “Robust and optimal tuning of PI and PID controllers,” IEE Proceedings, Control Theory and Applications, Vol. 149, pp. 17-25, Jan. 2002.
[30] A. R. Benaskeur, and A. Desbiens, “Backstepping-based adaptive PID control,” IEE Proceedings, Control Theory and Applications, Vol. 149, pp. 54-59, Jan. 2002.
[31] P. Cominos, and N. Munro, “PID controllers: recent tuning methods and design to specification,” IEE Proceedings, Control Theory and Applications, Vol. 149, pp. 46-53, Jan. 2002.
[32] A. Visioli, “Tuning of PID controllers with fuzzy logic,” IEE Proceedings, Control Theory and Applications, Vol. 148, pp. 1-8, Jan. 2001.
[33] B.G. Hu, G. K. I. Mann, and R. G. Gosine, “A systematic study of fuzzy PID controllers-function-based evaluation approach,” IEEE Trans. on Fuzzy Systems, Vol. 9, pp. 699-712, Oct. 2001.
[34] 張碩, “自動控制系統”, 鼎茂圖書, 1997。
[35] C. W. Chan, and K. Hui, “Design of stable actuator saturation compensators in the frequency domain,” IEE Proceedings Control Theory and Applications, Vol. 145, pp. 345-352, May 1998.
[36] H. B. Shin, “New antiwindup PI controller for variable-speed motor drives,” IEEE Trans. on Industrial Electronics, Vol. 45, pp. 445-450, June 1998.
[37] A. S. Hodel, and C. E. Hall, “Variable-Structure PID Control to Prevent Integrator Windup,” IEEE Trans. on Industrial Electronics, Vol. 48, no. 2, pp. 442-451, April 2001.
[38] 仲成儀器, “AD/DA Servo Control Card”, 仲成儀器股份有限公司。
[39] 秉昱科技, “模糊邏輯與類神經模糊實例說明”, 儒林圖書有限公司, 2000。
[40] 孫宗瀛、楊英魁, “Fuzzy控制:理論、實作與應用”, 全華科技圖書股份有限公司, 1997。
[41] L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965.
[42] G. J. Klir, and T. A. Folger, “Fuzzy Sets,” Uncertainty, and Information, Prentice-Hall International, Inc, 1988.
[43] “馬達示意圖”, 寶迪企業股份有限公司, 2001。