| 研究生: |
陳奕聞 I-Wen Chen |
|---|---|
| 論文名稱: |
氣密夾持模式對於快塑成型效果之研究 Effect of Airtight Clamping Mode on Quick Plastic Forming |
| 指導教授: | 李天錫 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 快塑成型 、超塑性5083 、手機殼 |
| 外文關鍵詞: | Quick Plastic Forming, Superplastic 5083, Shell of Cellphone |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
快塑成型技術通常應用於製作汽車鋁鈑件,來達到大量生產的目的,而本論文主要探討以快塑成型技術應用於手機外殼零件製造之可行性。實驗以1mm SP5083 鋁合金鈑片為實驗材料,通過不同製程模式與調整製程參數的方式,進行縮短製程時間之實驗,並量測成型後鈑片厚度分佈情形,比較不同模式下厚度分佈的差異。製程模式分為三類,是以模具夾持的方式進行區分,夾持模式1為直接夾持至指定壓力,夾持模式2為隨著吹氣壓力調整夾持壓力,夾持模式3為兩階段夾持,第一階段以輕微夾持方式預吹,接著第二階段夾持到指定壓力。製成時間最初以90秒進行實驗,而後慢慢縮短至60秒,不同實驗參數則會影響鈑片成型度。厚度量測分為橫切面與角隅切面,以手機殼來說厚度分佈越均勻越好。
Quick plastic forming technology is usually used to manufacture the aluminum parts of automotive to achieve the goal of mass production. This thesis focuses on the feasibility to use quick plastic forming technology to make the shell of cellphone. The experiment material is 1mm SP5083 aluminum alloy sheet, and through the different ways of process mode and adjusting the process parameters to shorten the process time. Then measure the thickness of formed sheet and compare different mode of thickness. There are three types of process mode which distinguish by the die clamping type. Mode 1 is directly clamping to the specify pressure. Clamping pressure changes with blowing pressure in mode 2. Mode 3 is two stage clamping mode. The first stage is clamping slightly to pre-blowing, and the second stage is directly clamping to the specify pressure. The initial process time of experiment is 90 seconds and slowly reduced to 60 seconds. Different experiment process parameters will influences the completeness of sheet. There are cross section and corner section in thickness distribution. The more uniform the thickness distribution is, the better the shell of cellphone is.
1.Gillo Giuliano, Superplastic forming of advanced metallic materials, Woodhead Publishing Limited, 2011, pp.272-275.
2.F. Yang and W. Yang, Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions, Scripta Materialia, 2009, 61, pp.919-922.
3.C.M. Hu, C.M. Lai, P.W. Kao, N.J. Ho, J.C. Huang, Quantitative measurements of small scaled grain sliding in ultra-fine grained Al–Zn alloys produced by friction stir processing, Materials Characterization, 2010, 61, pp.1043-1053.
4.R.M. Cleveland, A.K. Ghosh, J.R. Bradley, Comparison of superplastic behavior in two 5083 aluminum alloys, Materials Science and Engineering, A351, pp.228-236.
5.K. Higashi, M. Mabuchi and T.G. Langdon, High-Strain-Rate Superplasticity in Metallic Materials and the Potential for Ceramic Materials, ISIJ International, Vol.36(1996), pp.1423-1438.
6.O.D. Sherby and J. Wadsworth, Prog. Mater. Sic., 33, 1989, pp.169.
7.洪薪富, 超塑性成形與快速塑性成形分析比較, 國立中央大學機械工程研究所碩士論文, pp.12, 2015.