| 研究生: |
蘇子皓 Tzu-Hao Su |
|---|---|
| 論文名稱: |
上行多載波非正交多重接取系統傳輸功率 最小化之資源配置研究 Resource Allocation for Power Minimization in Multiuser Multicarrier NOMA Uplink Systems |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 多載波 、非正交多重接取系統 、上行 、資源配置 |
| 外文關鍵詞: | zero-Forcing Beamforming (ZFBF), successive interference cancellation (SIC) |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
論文摘要
本論文提出一個多使用者多載波非正交多重接取系統(Multiuser Multicarrier NOMA),搭配使用者選擇分組演算法、子載波配置演算法及位元配置演算法來降低整體系統的傳輸功率。在多使用者多載波非正交多重接取系統中,每一個子載波可以分配給一群由多組使用者組成的用戶們進行資料傳輸。本論文以兩個使用者為一組,兩個組為一群,透過使用比較正交分頻多工系統中單一使用者更低功率的調變方式進行資料傳輸以藉此降低傳輸所需的功率。然而,因為在多天線架構下同時進行傳輸,各組使用者亦會接收到來自其他天線的傳輸干擾(Inter-set Interference);再者,由於多使用者共用同一段頻帶,即共享同一個子載波作資料傳輸,故會產生同頻帶之間的干擾(Co-channel Interference),而這些干擾類型也是多使用者多載波非正交多重接取系統所主要需克服的難題。故為了因應上述干擾,論文中採用Zero-forcing Beamforming(ZFBF)以消除來自其他天線所傳出的干擾,同時搭配連續干擾消除技術(SIC)以消除來自傳輸功率較大的使用者之干擾。
Abstract
In this thesis, a multiuser multicarrier non-orthogonal multiple access system is proposed to reduce the total required transmit power in uplink transmission with user selection, subcarrier allocation, and bit allocation algorithms. In multiuser multicarrier non-orthogonal multiple access systems, each subcarrier can be assigned to a cluster of users composed of multiple sets for data transmission. This thesis takes two users as a set and two sets as a cluster; the system compares the required transmit power of each cluster of users in each subcarrier, and then allocates subcarriers to reduce the overall system required transmit power. However, due to simultaneous transmission in multi antenna architecture, users in each set will also receive inter-set interference from other antennas. Moreover, since multiple users share the same frequency band, that is to say, they share the same subcarrier for data transmission, so there will be co-channel interference in the same frequency band. These types of interference are also the main problems to be overcome in multi-antenna non-orthogonal multiple access systems. Therefore, in order to cope with the above-mentioned interference, zero-forcing beamforming (ZFBF) is used to eliminate the interference from other antennas, and the successive interference cancellation (SIC) is used to eliminate the interference from the weak set user with the lower channel gain between two users in a set.
Reference
[1] S. Vashi, J. Ram, J. Modi, S. Verma and C. Prakash, “Internet of Things (IoT): A vision, architectural elements, and security issues,” 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, pp. 492-496, 2017.
[2] F. Rusek et al., “Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[3] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Fe. 2014.
[4] A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684-702, Jun. 2003.
[5] Z. Ding et al., “Application of Non-Orthogonal Multiple Access in LTE and 5G Networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185-191, Feb. 2017.
[6] Y. Liu, G. Pan, H. Zhang and M. Song, “On the Capacity Comparison Between MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123-2129, 2016.
[7] K. Jiang, T. Jing, Y. Huo, F. Zhang and Z. Li, “SIC-Based Secrecy Performance in Uplink NOMA Multi-Eavesdropper Wiretap Channels,” IEEE Access, vol. 6, pp. 19664-19680, 2018.
[8] T. K. Lyu, “Capacity of multi-user MIMO systems with MMSE and ZF precoding,” 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, pp. 1083-1084, 2016.
[9] Z. Ding, F. Adachi and H. V. Poor, “The Application of MIMO to Non-Orthogonal Multiple Access,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 537-552, Jan. 2016.
[10] Z. Ding, R. Schober and H. V. Poor, “On the design of MIMO-NOMA downlink and uplink transmission,” 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1-6, 2016.
[11] Y. H. Huang, "Performance Analysis of Uplink MIMO-NOMA Systems in the Presence of Channel Estimation Error," Master's thesis, Department of Communication Engineering, National Central University, Taoyuan County, 2018.
[12] C. j. Chen and L. c. Wang, “Performance Analysis of Scheduling in Multiuser MIMO Systems with Zero-Forcing Receivers,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp. 1435-1445, Sep. 2007.
[13] B. Kimy et al., “Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System,” MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, CA, pp. 1278-1283, 2013.
[14] B. Kim et al., “Uplink NOMA with Multi-Antenna,” 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, pp. 1-5, 2015.
[15] S. Liu, C. Zhang and G. Lyu, “User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system,” 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 2561-2565, 2015.
[16] Y. H. Chen, Y. F. Chen, S. M. Tseng, and D. F. Tseng, “Low Complexity User Selection and Power Allocation for Uplink NOMA Beamforming Systems,” Wireless Pers Commun 111, 1413–1429, 2020.
[17] W. Liu, L. L. Yang and L. Hanzo, “SVD-Assisted Multiuser Transmitter and Multiuser Detector Design for MIMO Systems,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 1016-1021, Feb. 2009.
[18] T. Takeda and K. Higuchi, “Enhanced User Fairness Using Non-Orthogonal Access with SIC in Cellular Uplink,” 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA, pp. 1-5, 2011.
[19] D. Tse, P. Viswanath, “Fundamentals of Wireless Communication,” Cambridge University Press, 2005.
[20] Y. F. Chen and J. W. Chen, “A Fast Subcarrier, Bit, and Power Allocation Algorithm for Multiuser OFDM-Based Systems,” IEEE Trans. Vehicular Technology, Vol. 57, Issue: 2, pp. 873-811, Mar. 2008.
[21] Y. Saito, A. Benjebbour, Y. Kishiyama, T. Nakamura, “System-level performance evaluation of downlink non-orthogonal multiple access (NOMA),” IEEE PIMRC, pp. 611-615, Sept. 2013.
[22] J. H. Tseng, Y. F. Chen, and C. L. Wang, "User Selection and Resource Allocation Algorithms for Multicarrier NOMA Systems on Downlink Beamforming," in IEEE Access, vol. 8, pp. 59211-59224, 2020.
[23] W.Cai; C.Chen; L.Bai; Y.Jin; J.Choi,“Subcarrier and power allocation scheme for downlink OFDM-NOMA systems” IET Signal Processing, 2017, pp. 51-58.
[24] J.M. Torrance and L. Hanzo, “Optimisation of switching levels for adaptive modulation in slow Rayleigh fading,” Electronics Letters, Vol. 32, Issue: 13, pp. 1167-1169, Jun. 1996.
[25] L. Dong, G. Xu, and H. Ling, “Prediction of fast fading mobile radio channels in wideband communication systems, “IEEE Global Telecommunication Conference,” vol.6, pp.3287-3291, Nov. 2001.