| 研究生: |
莊敏強 Min-Chiang Chuang |
|---|---|
| 論文名稱: |
利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應 Local anodic oxidation of graphene on selectively doped patterned silicon template |
| 指導教授: |
溫偉源
Wei Yen Woon |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 陽極氧化 、掃描探針顯微鏡 、石墨稀 |
| 外文關鍵詞: | anodic oxidation, graphene, AFM |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由碳原子所組成的二維平面系統,它的電阻率極低,電子遷移速率快,使石墨烯成為半導體工業取代矽晶圓的最佳材料之一。石墨烯為一零能隙的材料為取代閘極最需克服之問題,必須將石墨烯的能隙打開(gap opening)。產生能隙的方法之一為部分地氧化石墨烯。所以局部地氧化石墨烯對於未來的半導體發展更為重要。本實驗利用掃描探顯微術來局部氧化石墨稀並觀察石墨稀氧化的機制,我們發現氧化產生的結構有部分來自於石墨稀底下矽基板氧化矽的貢獻,利用改變矽基板上氧化層的厚度我們也釐清了氧化石墨稀和氧化矽的比例,也更進一步的了解氧化石墨稀和氧化矽產生的先後次序。經由以上實驗的啟發,我們試著改變矽基板的參雜來改變基板表面的功函數,石墨稀的功函數會隨著底下矽基板的功函數改變而導致不同的氧化行為,經由了解參雜對氧化石墨稀的影響,我們發展出經由氧化石墨稀微調能階的方法。
Graphene is a two dimensional system consists of carbon atom. It has low resistance and high electron mobility, and is considered as one of the potential materials to replace silico in semiconductor industry. One of the problem to be overcome in using graphene as a gate in semiconductor devices is the property of gapless energy spectrum. Several ways of gap opening are considered. One way to open the gap is partial oxidation of graphene. Therefore local oxidation of graphene is a key issue for further application in semiconductor. We use atomic force microscopy (AFM) with local anodic oxidation (LAO) to oxidize and observe the mechanism of LAO on graphene. We find that the oxidation height is contributed from underneath silicon oxide protrusion and surface graphene oxide (GO). By varying the buffer oxide layer thickness, we clarify the formation order of GO and silicon oxide. Inspired from above experiments, a concept of using doping difference in template for controlling the LAO is presented. This method may give us a way to fine tune the band gap of graphene.
[1] C. W. Chen et al., Oxygen sensors made by monolayer graphene under room
temperature, APPLIED PHYSICS LETTERS 99 (2011), 243502.
[2] Ik-Su Byun et al., Nanoscale lithography on monolayer graphene using hydro-
genation and oxidation, ACS Nano 8 (2011), 6417.
[3] Javad Rafiee et al., Wetting transparency of graphene, NATURE MATERIALS
11 (2012), 217.
[4] Jin Ok Hwang et al., Workfunction-tunable, n-doped reduced graphene transpar-
ent electrodes for high-performance polymer light-emitting diodes, ACS Nano 6
(2012), 159.
[5] Justice M. P. Alaboson et al., Conductive atomic force microscope nanopatterning
of epitaxial graphene on sic(0001) in ambient conditions, Advenced Materals 23
(2011), 2181.
[6] K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science
306 (2004), 666.
[7] Konstantin V. Emtsev et al., Towards wafer-size graphene layers by atmospheric
pressure graphitization of silicon carbide, NATURE MATERIALS 8 (2009), 203.
[8] K.S. Novoselov et al., Nanolithography and manipulation of graphene using an
atomic force microscope, Solid State Communications 147 (2008), 366.
7576
[9] Phaedon Avouris et al., Atomic force microscope tip-induced local oxidation of
silicon: kinetics, mechanism, and nanofabrication, APPLIED PHYSICS LET-
TERS 71 (1997), 285.
[10] R. K. Puddy et al., Atomic force microscope nanolithography of graphene: Cuts,
pseudocuts,and tip current measurements, APPLIED PHYSICS LETTERS 98
(2011), 133120.
[11] S. Masubuchi et al., Fabrication of graphene nanoribbon by local anodic oxidation
lithography using atomic force microscope, APPLIED PHYSICS LETTERS 94
(2009), 082107.
[12] Sukang Bae et al., Roll-to-roll production of 30-inch graphene ?lms for transpar-
ent electrodes, nature nanotechnology 5 (2010), 574.
[13] Wenjing Zhang et al., Opening an electrical band gap of bilayer graphene with
molecular doping, AscNano 9 (2011), 7517.
[14] Xinming Li et al., Graphene-on-silicon schottky junction solar cells, Advenced
Materals 22 (2010), 2743.
[15] Yu-Ming Lin et al., Wafer-scale graphene integrated circuit, Science 332 (2011),
1294.
[16] A. K. Geim, Graphene: Status and prospects, Science 324 (2009), 1530.
[17] A. K. GEIM and K. S. NOVOSELOV, The rise of graphene, nature materials 6
(2007), 183.
[18] Philip Kim, Electronic transport in graphene heterostructures, Annu. Rev. Con-
dens. Matter Phys 2 (2011), 101.
[19] et al. Lishan Weng, Atomic force microscope local oxidation nanolithography of
graphene, APPLIED PHYSICS LETTERS 93 (2008), 093107.[20] Cecilia Mattevi, A review of chemical vapour deposition of graphene on copper,
Journal of Materials Chemistry 21 (2011), 3324.
[21] K. S. Novoselov, Graphene: Materials in the flatland, REVIEWS OF MODERN
PHYSICS 8 (2011), 837.
[22] Frank schwierz, graphene transistors, nature nanotechnology 5 (2010), 487.
[23] P. R. Wallace, The band theory of graphite, Physical Review Letter 71 (1947),
622.