| 研究生: |
胡永欽 Yu-Chin Hu |
|---|---|
| 論文名稱: |
連續壁防治土壤液化之初步研究 |
| 指導教授: |
陳慧慈
Huei-Tsyr Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 有效應力法 、土壤液化 、連續壁 |
| 外文關鍵詞: | effective stress method, soil liquefaction, diaphragm wall |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
式,就地中連續壁降低土壤液化潛能之有效性進行初步探討。首先探
討了地震輸入維度、輸入地震的強度以及邊界條件對土壤受震反應的
影響,而後根據連續壁之勁度、埋置深度的參數變化探討連續壁防治
土壤液化的有效性。研究結果顯示,三維問題的研究應使用三維的地
震輸入比較適合,且輸入地震之加速度峰值越大,孔隙水壓上升的速
率也越快。採用連續壁可以延緩孔隙水壓到達最大值的時間,靠近連
續壁之土壤因受拘束作用而抑制了孔隙水壓之上升量,但距離較遠處
其效果遞減。根據此一初步之研究,只要設計得宜,連續壁不但可以
防止土壤液化,而且也可以降低地表沉陷量。
effectiveness of diaphragm wall in reducing the potential of soil
liquefaction induced by earthquakes in time domain. The influence of
the dimension of input motion, and the intensity of input motion, on the
obtained results is investigated first, and then the effectiveness of
diaphragm wall in reducing the liquefaction potential is studied by
varying the young’s modulus and embedment depth of wall. It was
found that in three dimension analysis, the 3D input motion should be
used, and the larger input motion is the faster the excess pore pressure is
generated. It also found that with appropriate design, the diaphragm
wall can be effective in preventing liquefaction, and reducing settlement.
1. Seed, H.B. and Lee, K.L., “Liquefaction of Saturated Sand
During Cyclic Loadings,” Journal of the Soil Mechanics and
Foundation Division, ASCE, Vol92 , No.SM6, pp.105-134, 1966.
2. Seed, H.B. “Evaluation of Soil Liquefaction Effects on
Level Ground Earthquake,” ASCE, Annual Convention and
Exposition, Liquefaction Problems in Geotechnical
Engineering, Philadelphia, 1976.
3. Castro, G., Poulos, S.J. “Factor Affecting Liquefaction and
Cyclic Mobility,” ASCE, Annual Convention and Exposition,
Liquefaction Problems in Geotechnical Engineering,
4. Seed, H.B. and Idress, I.M., “Simplified Procedure for
Evaluation for Level Ground During Earthquakes,” Journal
of the Soil Mechanics and Foundation Division, ASCE, Vol.97,
No.11, pp.1249-1273, 1977.
5. Dikmen, S.U. and Ghaboussi, J., “Effective Stress Analysis
of Seismic Response and Liquefaction Theory, “Journal of
Geotechnical Engineer Division, ASCE, Vol.110, pp.628-644,
6. Zienkiewicz, O.C., “Liquefaction and Permanent Deformation
Under Dynamics Conditions Numerical Solution and
Constitutive Relations,” Soil Mechanics-Transient and
Cyclic Load, Chapter 5, pp77-103, 1982.
7. Prevost, J.H., “Nonlinear Transient Phenomena in SaturatedPorous Media,” Computer Methods Applied Mechanics and
Engineering, Vol.30, pp3-18, 1982.
8. Zienkiewicz, O.C. and Chang, C.T., and Hinton, E.,
“Nonlinear Seismic Response and Liquefaction,”
International Journal for Numerical and Analytical Methods
in Geomechanics,” Vol.2, pp387-404, 1978.
9. Biot, M.A., "Mechanics of Deformation and Acoustic
Propagation in Porous Media," Journal of Applied Physics,
Vol.33, pp.483-1498, 1962.
10. Ghaboussi, J. and Wilson, E.L., “Variation Formulation of
Dynamics of Fluid-Saturated Porous Elastic Solid,” Journal
of the Engineer Mechanics Division, ASCE, Vol.98, EM4,
pp.947-963, 1972.
11. Ghaboussi, J. and Dikmen, S.U., “Liquefaction Analysis for
Multidirectional Shaking,” Journal of Geotechnical
Engineer Division, ASCE, Vol.107, GT5, pp.605-627, 1987.
12. Zienkiewicz, O.C. and Chang, C.T., and Pastor, M. “Simple
Models for Soil Behavior and Applications to Problems of Soil
Liquefaction,” Numerical Method in Geomechanics, Swoboda,
Balkema, Rotterdam, 1988.
13. Pastor, M. and Zienkiewicz, O.C. and Leung, K.H., "Simple
Model for Transient Soil Loading in Earthquake Analysis I
Basic Models and its Application," International Journal for
Numerical and Analytical Methods in Geomechanics, Vol. 9,
pp.453-476, 1985.
14. Pastor, M. and Zienkiewicz, O.C. and Leung, K.H., "SimpleModel for Transient Soil Loading in Earthquake Analysis Ⅱ
Non-Associative Models for Sands," International Journal
for Numerical and Analytical Methods in Geomechanics, Vol.
9, pp.477-498, 1985.
15. Pacheco, M.P., Altschaeffl, A.G. and Chameau, J.L., "Pore
Pressure Prediction in Finite Element Analysis,"
International Journal for Numerical and Analytical Methods
in Geomechanics, Vol.13, pp.477-491, 1989.
16. 黃俊才,「考慮地震引致地下水位變動的土壤結構互制分析」,博
士論文,國立中央大學土木工程學系,中壢,民國八十三年六月。
17. 末松直幹,吉見吉昭,佐佐木康,”液狀化被害輕減對
策”,地盤液狀化,日本土質工學會,1984。
18. Satoshi, F., Kiyoshi, F., Akira, O., Yoshiaki, Y., Kohichi,
N., “Three-Dimensional Analysis for Evaluation
Effectiveness of Diaphragm Walls in Projecting a Piles-Soil
System from Liquefaction Hazard,” 日本建築學會構造工學論
文集。
19. Hiroyuki, T., Hiroyoshi, M., Hiroshi, K., Masanobu, O.,
“Study on Sheet Pile Wall Method as a Remediation Against
Liquefaction.”
20. 周健捷,「考慮孔隙水壓變化之樁基礎橋樑受震反應解析」,第七
屆大地工程學術研討會,pp.319-326,1997。
21. Fukutake, K., Ohtsuki, O., “Prediction of
Liquefaction-Preventing Effect of Partially-Improved Soil
by Three-Dimensional Liquefaction Analysis.”
22. Akiyoshi, T., Fuchida, K., Fang, L., “Absorbing boundary Conditions for Dynamic Analysis of Fluid-Saturated Porous
Media,” Soil Dynamics and Earthquake Engineering, Vol.13,
pp387-397, 1994.