跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡永欽
Yu-Chin Hu
論文名稱: 連續壁防治土壤液化之初步研究
指導教授: 陳慧慈
Huei-Tsyr Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 116
中文關鍵詞: 有效應力法土壤液化連續壁
外文關鍵詞: effective stress method, soil liquefaction, diaphragm wall
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 式,就地中連續壁降低土壤液化潛能之有效性進行初步探討。首先探
    討了地震輸入維度、輸入地震的強度以及邊界條件對土壤受震反應的
    影響,而後根據連續壁之勁度、埋置深度的參數變化探討連續壁防治
    土壤液化的有效性。研究結果顯示,三維問題的研究應使用三維的地
    震輸入比較適合,且輸入地震之加速度峰值越大,孔隙水壓上升的速
    率也越快。採用連續壁可以延緩孔隙水壓到達最大值的時間,靠近連
    續壁之土壤因受拘束作用而抑制了孔隙水壓之上升量,但距離較遠處
    其效果遞減。根據此一初步之研究,只要設計得宜,連續壁不但可以
    防止土壤液化,而且也可以降低地表沉陷量。



    effectiveness of diaphragm wall in reducing the potential of soil
    liquefaction induced by earthquakes in time domain. The influence of
    the dimension of input motion, and the intensity of input motion, on the
    obtained results is investigated first, and then the effectiveness of
    diaphragm wall in reducing the liquefaction potential is studied by
    varying the young’s modulus and embedment depth of wall. It was
    found that in three dimension analysis, the 3D input motion should be
    used, and the larger input motion is the faster the excess pore pressure is
    generated. It also found that with appropriate design, the diaphragm
    wall can be effective in preventing liquefaction, and reducing settlement.

    誌謝I 中文摘要II 英文摘要III 目錄IV 表目錄VI 圖目錄VII 第一章緒論1 1.1 研究動機與背景1 1.2 研究方法及目的2 1.3 論文內容2 第二章文獻回顧3 2.1 前言3 2.2 影響土壤液化的因素3 2.3 液化分析與防止土壤液化對策工法5 第三章理論推導9 3.1 前言9 3.2 系統的控制方程式(Governing Equation) 9 3.3 分析系統控制方程式之有限元素解析13 3.3.1 有限元素形式13 3.3.2 運動方程式之時間積分法18 3.4 多孔介質的邊界處理20 3.5 土壤非線性模式23 3.6 孔隙水壓模式25 第四章程式驗證28 4.1 前言28 4.2 一維模式的受震模擬28 第五章數值案例研究29 5.1 前言29 5.2 分析模型與輸入地震之介紹29 5.3 地震輸入維度對受震反應之影響30 5.4 地震輸入加速度峰值對受震反應之影響32 5.5 連續壁防治土壤液化有效性分析32 第六章結論與建議37 6.1 結論37 6.2 建議38 參考文獻39

    1. Seed, H.B. and Lee, K.L., “Liquefaction of Saturated Sand
    During Cyclic Loadings,” Journal of the Soil Mechanics and
    Foundation Division, ASCE, Vol92 , No.SM6, pp.105-134, 1966.
    2. Seed, H.B. “Evaluation of Soil Liquefaction Effects on
    Level Ground Earthquake,” ASCE, Annual Convention and
    Exposition, Liquefaction Problems in Geotechnical
    Engineering, Philadelphia, 1976.
    3. Castro, G., Poulos, S.J. “Factor Affecting Liquefaction and
    Cyclic Mobility,” ASCE, Annual Convention and Exposition,
    Liquefaction Problems in Geotechnical Engineering,
    4. Seed, H.B. and Idress, I.M., “Simplified Procedure for
    Evaluation for Level Ground During Earthquakes,” Journal
    of the Soil Mechanics and Foundation Division, ASCE, Vol.97,
    No.11, pp.1249-1273, 1977.
    5. Dikmen, S.U. and Ghaboussi, J., “Effective Stress Analysis
    of Seismic Response and Liquefaction Theory, “Journal of
    Geotechnical Engineer Division, ASCE, Vol.110, pp.628-644,
    6. Zienkiewicz, O.C., “Liquefaction and Permanent Deformation
    Under Dynamics Conditions Numerical Solution and
    Constitutive Relations,” Soil Mechanics-Transient and
    Cyclic Load, Chapter 5, pp77-103, 1982.
    7. Prevost, J.H., “Nonlinear Transient Phenomena in SaturatedPorous Media,” Computer Methods Applied Mechanics and
    Engineering, Vol.30, pp3-18, 1982.
    8. Zienkiewicz, O.C. and Chang, C.T., and Hinton, E.,
    “Nonlinear Seismic Response and Liquefaction,”
    International Journal for Numerical and Analytical Methods
    in Geomechanics,” Vol.2, pp387-404, 1978.
    9. Biot, M.A., "Mechanics of Deformation and Acoustic
    Propagation in Porous Media," Journal of Applied Physics,
    Vol.33, pp.483-1498, 1962.
    10. Ghaboussi, J. and Wilson, E.L., “Variation Formulation of
    Dynamics of Fluid-Saturated Porous Elastic Solid,” Journal
    of the Engineer Mechanics Division, ASCE, Vol.98, EM4,
    pp.947-963, 1972.
    11. Ghaboussi, J. and Dikmen, S.U., “Liquefaction Analysis for
    Multidirectional Shaking,” Journal of Geotechnical
    Engineer Division, ASCE, Vol.107, GT5, pp.605-627, 1987.
    12. Zienkiewicz, O.C. and Chang, C.T., and Pastor, M. “Simple
    Models for Soil Behavior and Applications to Problems of Soil
    Liquefaction,” Numerical Method in Geomechanics, Swoboda,
    Balkema, Rotterdam, 1988.
    13. Pastor, M. and Zienkiewicz, O.C. and Leung, K.H., "Simple
    Model for Transient Soil Loading in Earthquake Analysis I
    Basic Models and its Application," International Journal for
    Numerical and Analytical Methods in Geomechanics, Vol. 9,
    pp.453-476, 1985.
    14. Pastor, M. and Zienkiewicz, O.C. and Leung, K.H., "SimpleModel for Transient Soil Loading in Earthquake Analysis Ⅱ
    Non-Associative Models for Sands," International Journal
    for Numerical and Analytical Methods in Geomechanics, Vol.
    9, pp.477-498, 1985.
    15. Pacheco, M.P., Altschaeffl, A.G. and Chameau, J.L., "Pore
    Pressure Prediction in Finite Element Analysis,"
    International Journal for Numerical and Analytical Methods
    in Geomechanics, Vol.13, pp.477-491, 1989.
    16. 黃俊才,「考慮地震引致地下水位變動的土壤結構互制分析」,博
    士論文,國立中央大學土木工程學系,中壢,民國八十三年六月。
    17. 末松直幹,吉見吉昭,佐佐木康,”液狀化被害輕減對
    策”,地盤液狀化,日本土質工學會,1984。
    18. Satoshi, F., Kiyoshi, F., Akira, O., Yoshiaki, Y., Kohichi,
    N., “Three-Dimensional Analysis for Evaluation
    Effectiveness of Diaphragm Walls in Projecting a Piles-Soil
    System from Liquefaction Hazard,” 日本建築學會構造工學論
    文集。
    19. Hiroyuki, T., Hiroyoshi, M., Hiroshi, K., Masanobu, O.,
    “Study on Sheet Pile Wall Method as a Remediation Against
    Liquefaction.”
    20. 周健捷,「考慮孔隙水壓變化之樁基礎橋樑受震反應解析」,第七
    屆大地工程學術研討會,pp.319-326,1997。
    21. Fukutake, K., Ohtsuki, O., “Prediction of
    Liquefaction-Preventing Effect of Partially-Improved Soil
    by Three-Dimensional Liquefaction Analysis.”
    22. Akiyoshi, T., Fuchida, K., Fang, L., “Absorbing boundary Conditions for Dynamic Analysis of Fluid-Saturated Porous
    Media,” Soil Dynamics and Earthquake Engineering, Vol.13,
    pp387-397, 1994.

    QR CODE
    :::