| 研究生: |
張軒嘉 Hsuan Chia Chang |
|---|---|
| 論文名稱: |
探討 PGC-1α與Bhlhe40 的交互作用在生理上所代表的意義 To investigate the physiological roles of PGC-1α and Bhlhe40 interaction in muscle cells |
| 指導教授: |
陳盛良
Shen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 過氧化小體 、粒線體 、PGC-1α 、Bhlhe40 |
| 外文關鍵詞: | Peroxisome, mitochondria, PGC-1α, Bhlhe40 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)是一個轉錄協同活化因子,調控著氧化代謝,並在調控粒線體生合成以及功能上,扮演極其重要的角色。過去我們實驗室的結果顯示,basic helix-loop-helix family, member e40 (Bhlhe40)與PGC-1α在肌肉細胞中具有很強的結合力,並且Bhlhe40會結合在PGC-1α的啟動子上面抑制其表現量,並且會透過招來HDACs來降低PGC-1α的偕同轉錄活性,另外發現短片段的VP16ADBhlhe40(1-135a.a)-flag (VBHF)可以恢復Bhlhe40對PGC-1α的抑制效果。本篇透過在肌肉細胞中表現短片段的VBHF,探討Bhlhe40與PGC-1α的交互作用在肌肉細胞中所扮演的角色,我們發現,在細胞中表現VBHF後,會降低細胞內的ROS以及粒線體數量,但是卻可以增加細胞的氧氣消耗率,還會增加細胞內過氧化氫小體的數量以及效率,指出Bhlhe40會藉由PGC-1α來影響粒線體以及過氧化小體的功能,進一步的代謝實驗發現,基礎的葡萄糖代謝雖然下降,但是在有胰島素誘導的情況下是上升的,而在脂肪酸代謝方面,粒線體以及過氧化小體方面的脂肪酸代謝都有顯著的上升。除此之外,我們把Bhlhe40的DNA binding domain突變(VBHM)後,發現對於細胞內粒腺體以及過氧化小體的影響消失,代表DNA binding domain對於Bhlhe40去影響粒線體以及過氧化小體的能力是非常重要的。總結來說Bhlhe40會藉由抑制PGC-1α的活性來降低粒線體的功能以及抑制過氧化小體的生合成。最後我們想利用大腸桿菌表現並純化出VBH135,作為一個蛋白質藥,增加肥胖或是代謝不良的病人的代謝效率。
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a transcriptional coactivitor participating in the regulation of oxidative metabolism. It is hailed as the master regulator of mitochondria as it coactivates key transcription factors important for mitochondrial function. Our previous results showed that the Bhlhe40 transcription factor repressed the expression of PGC-1α by targeting its proximal promoter and hindered its transactivational ability through recruitment of HDACs. The present study was designed to investigate the physiological roles of PGC-1α and Bhlhe40 interaction in muscle cells. We found that chimeric protein (VBH135) of VP16 activation domain and 1-135 residues of Bhlhe40 rescued the repression effect of wildtype Bhlhe40. Overexpression of VBH135 decreased levels of intracellular ROS and mitochondrion number but increased oxygen consumption, indicating the functional roles of Bhlhe40 on mitochondrial functions. Further metabolic analysis indicated that the basal glucose uptake was decreased but the insulin-induced glucose uptake was increased. Furthermore, mitochondrial and peroxisomal β-oxidation was increased by VBH135. In cells with overexpression of VBH135 the peroxisome number showed a marked increase, implicating the involvement of Bhlhe40 in peroxisomal biogenesis. Increased expression of peroxisome biogenesis-related genes in VBH135 overexpressed cells were identified by microarray assay. Consequently, VBH135 strongly enhanced fatty acids and glucose metabolism. Interestingly, some effects were not found when the DNA binding ability of VBH135 was mutated. Taken together, Bhlhe40 represses mitochondrial function and decreases peroxisome number by negatively regulating PGC-1α at both expression and activity levels. As VBH135 can dominantly rescue wildtype Bhlhe40 repressed oxidative metabolism, it might serve as a metabolic drug for improving the metabolic efficiency in subjects, such as diabetic patients, suffering from low metabolic efficiency.
六、 參考資料
Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121-126.
Arany, Z., S.Y. Foo, Y. Ma, J.L. Ruas, A. Bommi-Reddy, G. Girnun, M. Cooper, D. Laznik, J. Chinsomboon, S.M. Rangwala, K.H. Baek, A. Rosenzweig, and B.M. Spiegelman. 2008. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 451:1008-1012.
Bagattin, A., L. Hugendubler, and E. Mueller. 2010. Transcriptional coactivator PGC-1alpha promotes peroxisomal remodeling and biogenesis. Proc Natl Acad Sci U S A. 107:20376-20381.
Baldelli, S., K. Aquilano, and M.R. Ciriolo. 2014. PGC-1alpha buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis. 5:e1515.
Belke, D.D., T.S. Larsen, G.D. Lopaschuk, and D.L. Severson. 1999. Glucose and fatty acid metabolism in the isolated working mouse heart. Am J Physiol. 277:R1210-1217.
Boudjelal, M., R. Taneja, S. Matsubara, P. Bouillet, P. Dolle, and P. Chambon. 1997. Overexpression of Stra13, a novel retinoic acid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P19 cells. Genes Dev. 11:2052-2065.
Chung, S.Y., C.H. Kao, F. Villarroya, H.Y. Chang, H.C. Chang, S.P. Hsiao, G.G. Liou, and S.L. Chen. 2015. Bhlhe40 Represses PGC-1alpha Activity on Metabolic Gene Promoters in Myogenic Cells. Mol Cell Biol. 35:2518-2529.
Cunningham, J.T., J.T. Rodgers, D.H. Arlow, F. Vazquez, V.K. Mootha, and P. Puigserver. 2007. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 450:736-740.
Fitts, R.H., D.R. Riley, and J.J. Widrick. 2001. Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol. 204:3201-3208.
Friedman, J.R., and J. Nunnari. 2014. Mitochondrial form and function. Nature. 505:335-343.
Fujiki, Y., K. Okumoto, S. Mukai, M. Honsho, and S. Tamura. 2014. Peroxisome biogenesis in mammalian cells. Front Physiol. 5:307.
Hargreaves, M. 2000. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 27:225-228.
Honma, S., T. Kawamoto, Y. Takagi, K. Fujimoto, F. Sato, M. Noshiro, Y. Kato, and K. Honma. 2002. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature. 419:841-844.
Kamigaki, A., S. Mano, K. Terauchi, Y. Nishi, Y. Tachibe-Kinoshita, K. Nito, M. Kondo, M. Hayashi, M. Nishimura, and M. Esaka. 2003. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant J. 33:161-175.
Ma, C., G. Agrawal, and S. Subramani. 2011. Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol. 193:7-16.
Michael, L.F., Z. Wu, R.B. Cheatham, P. Puigserver, G. Adelmant, J.J. Lehman, D.P. Kelly, and B.M. Spiegelman. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A. 98:3820-3825.
Murphy, M.P. 2009. How mitochondria produce reactive oxygen species. Biochem J. 417:1-13.
Nedachi, T., and M. Kanzaki. 2006. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. Am J Physiol Endocrinol Metab. 291:E817-828.
Neundorf, I., R. Rennert, J. Hoyer, F. Schramm, K. Lobner, I. Kitanovic, and S. Wolfl. 2009. Fusion of a Short HA2-Derived Peptide Sequence to Cell-Penetrating Peptides Improves Cytosolic Uptake, but Enhances Cytotoxic Activity. Pharmaceuticals (Basel). 2:49-65.
Nikolic, N., M. Rhedin, A.C. Rustan, L. Storlien, G.H. Thoresen, and M. Stromstedt. 2012. Overexpression of PGC-1alpha increases fatty acid oxidative capacity of human skeletal muscle cells. Biochem Res Int. 2012:714074.
Osellame, L.D., T.S. Blacker, and M.R. Duchen. 2012. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 26:711-723.
Poot, M., Y.Z. Zhang, J.A. Kramer, K.S. Wells, L.J. Jones, D.K. Hanzel, A.G. Lugade, V.L. Singer, and R.P. Haugland. 1996. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem. 44:1363-1372.
Puigserver, P., Z. Wu, C.W. Park, R. Graves, M. Wright, and B.M. Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829-839.
Rossner, M.J., J. Dorr, P. Gass, M.H. Schwab, and K.A. Nave. 1997. SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation. Mol Cell Neurosci. 9:460-475.
Schreiber, S.N., D. Knutti, K. Brogli, T. Uhlmann, and A. Kralli. 2003. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem. 278:9013-9018.
Smith, J.J., and J.D. Aitchison. 2013. Peroxisomes take shape. Nat Rev Mol Cell Biol. 14:803-817.
Steinberg, S.J., G. Dodt, G.V. Raymond, N.E. Braverman, A.B. Moser, and H.W. Moser. 2006. Peroxisome biogenesis disorders. Biochim Biophys Acta. 1763:1733-1748.
Summermatter, S., G. Shui, D. Maag, G. Santos, M.R. Wenk, and C. Handschin. 2013. PGC-1alpha improves glucose homeostasis in skeletal muscle in an activity-dependent manner. Diabetes. 62:85-95.
Sun, H., L. Li, C. Vercherat, N.T. Gulbagci, S. Acharjee, J. Li, T.K. Chung, T.H. Thin, and R. Taneja. 2007. Stra13 regulates satellite cell activation by antagonizing Notch signaling. J Cell Biol. 177:647-657.
Valle, I., A. Alvarez-Barrientos, E. Arza, S. Lamas, and M. Monsalve. 2005. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc Res. 66:562-573.
van der Bliek, A.M., Q. Shen, and S. Kawajiri. 2013. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 5.
Ventura-Clapier, R., A. Garnier, and V. Veksler. 2008. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res. 79:208-217.
Vercherat, C., T.K. Chung, S. Yalcin, N. Gulbagci, S. Gopinadhan, S. Ghaffari, and R. Taneja. 2009. Stra13 regulates oxidative stress mediated skeletal muscle degeneration. Hum Mol Genet. 18:4304-4316.
Wang, C., W. Liu, Z. Liu, L. Chen, X. Liu, and S. Kuang. 2015. Hypoxia Inhibits Myogenic Differentiation through p53 Protein-dependent Induction of Bhlhe40 Protein. J Biol Chem. 290:29707-29716.
Wu, Y., M. Moser, V.L. Bautch, and C. Patterson. 2003. HoxB5 is an upstream transcriptional switch for differentiation of the vascular endothelium from precursor cells. Mol Cell Biol. 23:5680-5691.
Wu, Z., P. Puigserver, U. Andersson, C. Zhang, G. Adelmant, V. Mootha, A. Troy, S. Cinti, B. Lowell, R.C. Scarpulla, and B.M. Spiegelman. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98:115-124.
七、