| 研究生: |
孫庭謙 Ting-Qian Sun |
|---|---|
| 論文名稱: |
合成中空類沸石咪唑骨架材料及空間侷限性對於酵素活性影響之研究 |
| 指導教授: |
謝發坤
Fa-Kuen Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 金屬有機骨架材料 、類沸石咪唑骨架材料 、中空類沸石咪唑骨架材料 、酵素 、酵素活性 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大多數固定化酵素由於材料和載體可能影響其結構變化、底物的擴散性、阻礙底物活性位點結合等等,其活性常低於未固定化之酵素。因此,具有可調性孔洞又能保護酵素避免受外界失活物質傷害的金屬有機骨架材料 (Metal-organic Frameworks, MOFs) 則替酵素固定化帶來新的發展可能。而本實驗室於2017年發表在JACS 的文章中,提出以原位創新合成方法 (de novo) 進行類沸石咪唑骨架 (Zeolitic imidazolate frameworks) 材料封裝酵素時,材料的空間限制會對酵素產生侷限性 (Spatial confinement) 之理論。同時利用尿素具有讓蛋白質結構展開而失去活性的特性,發現此材料酵素生物複合體因為侷限效應,在高濃度尿素下依然保有生物活性。為了更進一步探討材料的空間限制對於酵素活性表現的影響,如何開發具有保護功能又不會使得酵素自由度受限的材料,便成為一個重要的課題,而中空材料其內部空腔有機會解決空間限制對酵素活性的影響,因此本篇研究選擇中空金屬有機骨架材料作為研究模板。本研究利用不同的合成方法,合成中空(Hollow) 的類沸石咪唑骨架材料 Hollow ZIF-8以及 HZIF-90@ZnTA 並將酵素封裝於其中,探討酵素因空間侷限性減少所造成的活性變化,並比較兩者實驗結果。此外本研究參考最近文獻發表實驗過程,也成功在10分鐘之內利用單寧酸蝕刻,快速的製作出新型中空類沸石咪唑骨架材料 CAT@HZIF-90@ZnTA ,此研究成果結果或許能對於後續研究中空材料以及空間侷限性和酵素活性之間的關係提供一個嶄新的研究平台。
Immobilized enzymes usually showed lower enzymatic activity than free ones after applying for additional materials or supports, which might influence substrates diffusion, active sites accessibility, subunit dissociation, conformational change, especially volume-confined immobilization. It is necessary to find the potential material which overcomes the above-mentioned shortcomings and provides shell protection for embedded biomolecules to against external denaturing agents. Therefore, metal-organic frameworks (MOFs) with tunable porosity, and variable internal surface property for a targeted application, might be a suitable candidate for advanced enzyme immobilization.
Recently, we reported a paper regrading an additional strength of the de novo approach by demonstrating that embedded enzymes in metal-organic frameworks (MOFs) via de novo approach remain biological functions under a wider range of reaction conditions such as urea. The enhanced stability of the of enzyme molecules arises from the confinement effects provided by MOF structure. However, the enzymatic activity is not as well as the activity of free enzymes, which might be caused by the influence of spatial confinement on the enzymatic functionality.
In order to further investigate the influence of spatial confinement on the enzymatic functionality, herein, we synthesized the new hollow structure of Zeolitic imidazolate frameworks (Hollow ZIF-8 and HZIF-90@ZnTA) by using a modified approach based on a recent report , which embedded enzymes inside of void structures that mimic cytoplasmic conditions with less restricted environment. Accordingly, this part work may contribute to investigate the hollow structure material and the influence of spatial confinement on the enzymatic functionality.
1. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
2. Wu, C.-D.; Zhang, L.; Lin, W., 1D and 2D Homochiral Metal-Organic Frameworks Built from a New Chiral Elongated Binaphthalene-Derived Bipyridine. Inorganic Chemistry 2006, 45 (18), 7278-7285.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
4. Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C., Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2018, 30 (37), 1704303.
5. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 703-723.
6. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W., Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 782-835.
7. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
8. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 2012, 112 (2), 1196-1231.
9. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
10. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chemical Reviews 2012, 112 (2), 1232-1268.
11. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
12. Li, S.-L.; Xu, Q., Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 2013, 6 (6), 1656-1683.
13. Yoon, M.; Suh, K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. Angewandte Chemie International Edition 2013, 52 (10), 2688-2700.
14. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
15. Hoskins, B. F.; Robson, R., Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. Journal of the American Chemical Society 1990, 112 (4), 1546-1554.
16. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
17. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
18. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
19. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm 2006, 8 (3), 211-214.
20. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
21. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science (New York, N.Y.) 2008, 319 (5865), 939-943.
22. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 2010, 43 (1), 58-67.
23. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 2006, 103, 10186 - 10191.
24. Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z., Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications 2011, 47 (7), 2071-2073.
25. Qian, J.; Sun, F.; Qin, L., Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters 2012, 82, 220–223.
26. Tanaka, S.; Kida, K.; Okita, M.; Ito, Y.; Miyake, Y., Size-controlled Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Crystals in an Aqueous System at Room Temperature. Chemistry Letters 2012, 41 (10), 1337-1339.
27. Kida, K.; Okita, M.; Fujita, K.; Tanaka, S.; Miyake, Y., Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm 2013, 15 (9), 1794-1801.
28. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P., Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nature Communications 2015, 6 (1), 7240.
29. Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W., Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chemistry – A European Journal 2013, 19 (34), 11139-11142.
30. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 2012, 134 (35), 14345-14348.
31. Wee, L. H.; Lescouet, T.; Ethiraj, J.; Bonino, F.; Vidruk, R.; Garrier, E.; Packet, D.; Bordiga, S.; Farrusseng, D.; Herskowitz, M.; Martens, J. A., Hierarchical Zeolitic Imidazolate Framework-8 Catalyst for Monoglyceride Synthesis. ChemCatChem 2013, 5 (12), 3562-3566.
32. Chen, E.-X.; Yang, H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 2014, 53 (11), 5411-5413.
33. Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 2014, 8 (3), 2812-2819.
34. Vasconcelos, I. B.; Silva, T. G. d.; Militão, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Advances 2012, 2 (25), 9437-9442.
35. Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M., Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 2006, 45 (10), 1557-1559.
36. Chen, Y. M.; Yu, L.; Lou, X. W., Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie International Edition 2016, 55 (20), 5990-5993.
37. Torad, N. L.; Salunkhe, R. R.; Li, Y.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C.-C.; Yamauchi, Y., Electric Double-Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIF-67. Chemistry – A European Journal 2014, 20 (26), 7895-7900.
38. Rösler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R. A., Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk–Shell Metal@Zn/Co ZIF Nanostructures. Chemistry – A European Journal 2016, 22 (10), 3304-3311.
39. Chou, L.-Y.; Hu, P.; Zhuang, J.; Morabito, J. V.; Ng, K. C.; Kao, Y.-C.; Wang, S.-C.; Shieh, F.-K.; Kuo, C.-H.; Tsung, C.-K., Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale 2015, 7 (46), 19408-19412.
40. Yang, J.; Zhang, F.; Lu, H.; Hong, X.; Jiang, H.; Wu, Y.; Li, Y., Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIF-67@ZIF-8 as Selective Catalyst for the Semi-Hydrogenation of Acetylene. Angewandte Chemie International Edition 2015, 54 (37), 10889-10893.
41. Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
42. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
43. Messing, R. A., Introduction and General History of Immobilized Enzymes. Academic Press: 1975.
44. Liu, D.-M.; Chen, J.; Shi, Y.-P., Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 2018, 102, 332-342.
45. Bernfeld, P.; Wan, J., Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science 1963, 142 (3593), 678.
46. Wong, L. S.; Thirlway, J.; Micklefield, J., Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society 2008, 130 (37), 12456-12464.
47. Halliwell, B.; Gutteridge, J. M., The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995, 18 (1), 125-126.
48. https://courses.lumenlearning.com/wm-biology1/chapter/reading-electron-transport-chain/.
49. Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.; Mazur, M.; Telser, J., Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser JFree radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84. The international journal of biochemistry & cell biology 2007, 39, 44-84.
50. Deisseroth, A., & Dounce, A. L., Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiological reviews 1970, 50(3), 319–375. .
51. Blokhina, O., Virolainen, E., & Fagerstedt, K. V., Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of botany 2003, 91 Spec No(2), 179–194.
52. Fita, I.; Rossmann, M. G., The NADPH binding site on beef liver catalase. Proceedings of the National Academy of Sciences 1985, 82 (6), 1604.
53. B., C., Effect of pH upon the reaction kinetics of the enzyme-substrate compounds of catalase. The Journal of biological chemistry 1952, 194(2), 471–481.
54. https://en.wikipedia.org/wiki/Catalase.
55. https://en.wikipedia.org/wiki/Chymotrypsin.
56. Wilcox, P. E., [5] Chymotrypsinogens—chymotrypsins. In Methods in Enzymology, Academic Press: 1970; Vol. 19, pp 64-108.
57. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
58. Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J.; Caruso, F., Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface Functionalization. Advanced Functional Materials 2016, 26 (32), 5827-5834.
59. Bragg William, H. B. W., L., Proc. Royal Soc. Lond 1913, 88, 428-438.
60. Billah, A. Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication. 2016.
61. Sing, K., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57, 603.
62. Wu, C.-s.; Xiong, Z.-h.; Li, C.; Zhang, J.-m., Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Advances 2015, 5 (100), 82127-82137.
63. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
64. de Moreno, M. R.; Smith, J. F.; Smith, R. V., Mechanism Studies of Coomassie Blue and Silver Staining of Proteins. Journal of Pharmaceutical Sciences 1986, 75 (9), 907-911.
65. Ou, P.; Wolff, S. P., A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods 1996, 31 (1), 59-67.
66. Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS Letters 1990, 268 (1), 69-71.
67. Anderson, J.; Byrne, T.; Woelfel, K. J.; Meany, J. E.; Spyridis, G. T.; Pocker, Y., The Hydrolysis of p-Nitrophenyl Acetate: A Versatile Reaction To Study Enzyme Kinetics. Journal of Chemical Education 1994, 71 (8), 715.