| 研究生: |
張家彬 Chia-pin Chang |
|---|---|
| 論文名稱: |
以自發性化學蝕刻法製備矽奈米結構成長控制之研究 Fabrication of Silicon Nanostructures Using Spontaneous Chemical Etching |
| 指導教授: |
曹嘉文
Chia-wen Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 無電鍍 、金屬輔助化學蝕刻 、電化學 、矽奈米結構 |
| 外文關鍵詞: | Electrochemical, Metal-assist chemical etching, Silicon Nanostructures, Electroless Plating |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽基奈米結構具有許多優異的性質,廣泛應用於半導體、光電、生醫及能源領域中,因此發展製程技術扮演著關鍵的角色。本研究為探討一種簡易與迅速的金屬輔助化學蝕刻法,其方式不同以往的固-液-氣法與電化學蝕刻法,可在常溫與常壓條件下,利用自發性的電化學反應,即可生成出大面積且均勻的矽基奈米結構。為探討以此反應所成長矽基奈米結構,於不同金屬層、厚度、矽基材阻抗、蝕刻液及反應時間等參數下進行生成反應,而藉由電子顯微鏡觀察矽奈米結構的表面形貌、影像的分析及量測孔隙率等性質討論。經一系列實驗後發現,金屬的種類將會影響蝕刻速率,當反應的金屬薄膜厚度增加,結構將由奈米孔洞狀逐漸轉變為獨立且均勻分佈的奈米線與片狀結構。在此,為了達到更簡易、迅速性及低成本優勢,於矽表面以無電鍍技術來達到沉積金屬層,藉由金屬奈米粒子的變化可得到更細小及緻密的孔狀、片狀與線柱狀奈米結構產物,更增加其實際應用的可能性。
In recent years, silicon nanostructures have received great deal of attention from it is unique surface effects. The use of silicon nanostructures have been applied to a wide variety of fields including semiconductor, optoelectronic, biological and energy field. Therefore, developing silicon nanostructure fabrication technique becomes an intriguing topic for researchers. A fast and simple fabrication method called metal-assist chemical etching was investigated in this thesis. Compare with other silicon nanostructure fabrication techniques such as the solid-liquid-gas and electrochemical etching, metal-assist etching is a spontaneous electrochemical reaction which can uniformly create large area silicon nanostructure in room temperature and atmosphere conditions. In order to effectively control the growth of silicon nanostructure, effects of process parameters such as metal layer, substrate resistivity, etchant composition and etching time are investigated. SEM images are taken to characterize the silicon nanostructure morphologies. We found that the metal layer have significant effects to the silicon nanostructure formation. When the metal thickness increases, the nanostructures change from nanopores to nanofilaments or nanowires. In order to have simpler, faster and lower cost fabrication process, we further developed an electroless plating method to deposite the metal layer on silicon surface. In this thesis, we successfully demonstrate that finer silicon nanostructure can be fabricated through the electroless plating approach which holds great commercial potential from its simple, fast and low cost advantages.
[1] A. P. Alivisatos, "Semiconductor clusters, nanocrystals, and quantum dots," Science, vol. 271, pp. 933-937, 1996.
[2] M. Haruta, "Size- and support-dependency in the catalysis of gold," Catalysis Today, vol. 36, pp. 153-166, 1997.
[3] N. R. Jana, "Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles," Small, vol. 1, pp. 875-882, 2005.
[4] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, vol. 391, pp. 667-669, 1998.
[5] C. Dekker, "Carbon nanotubes as molecular quantum wires," Physics Today, vol. 52, pp. 22-28, 1999.
[6] G. Armstrong, A. R. Armstrong, J. Canales, and P. G. Bruce, "Nanotubes with the TiO2-B structure," Chemical Communications, pp. 2454-2456, 2005.
[7] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano Letters, vol. 6, pp. 2768-2772, 2006.
[8] A. I. Hochbaum and P. D. Yang, "Semiconductor Nanowires for Energy Conversion," Chemical Reviews, vol. 110, pp. 527-546, 2010.
[9] S. W. Chung, J. Y. Yu, and J. R. Heath, "Silicon nanowire devices," Applied Physics Letters, vol. 76, pp. 2068-2070, 2000.
[10] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, "Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications," Nature Materials, vol. 9, pp. 368-368, 2010.
[11] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, pp. 31-35, 2008.
[12] L. T. Canham, "Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers," Applied Physics Letters, vol. 57, pp. 1046-1048, 1990.
[13] C. W. Tsao, P. Kumar, J. K. Liu, and L. Devoe, "Dynamic electrowetting on nanofilament silicon for matrix-free laser desorption/ionization mass spectrometry," Analytical Chemistry, vol. 80, pp. 2973-2981, 2008.
[14] E. P. Go, J. V. Apon, G. H. Luo, A. Saghatelian, R. H. Daniels, V. Sahi, R. Dubrow, B. F. Cravatt, A. Vertes, and G. Siuzdak, "Desorption/ionization on silicon nanowires," Analytical Chemistry, vol. 77, pp. 1641-1646, 2005.
[15] J. Wei, J. M. Buriak, and G. Siuzdak, "Desorption-ionization mass spectrometry on porous silicon," Nature, vol. 399, pp. 243-246, 1999.
[16] J. Teva, Z. J. Davis, and O. Hansen, "Electroless porous silicon formation applied to fabrication of boron-silica-glass cantilevers," Journal of Micromechanics and Microengineering, vol. 20, pp. -, 2010.
[17] K. Q. Peng, X. Wang, and S. T. Lee, "Gas sensing properties of single crystalline porous silicon nanowires," Applied Physics Letters, vol. 95, pp. -, 2009.
[18] G. D''Arrigo, C. Spinella, G. Arena, and S. Lorenti, "Fabrication of miniaturised Si-based electrocatalytic membranes," Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 23, pp. 13-18, 2003.
[19] R. Chaoui, B. Mahmoudi, and Y. S. Ahmed, "Porous silicon antireflection layer for solar cells using metal-assisted chemical etching," Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 1724-1728, 2008.
[20] T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, and S. Christiansen, "Silicon nanowire-based solar cells," Nanotechnology, vol. 19, pp. -, 2008.
[21] A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, pp. 163-U5, 2008.
[22] X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Jin-Phillipp, and F. Phillipp, "Synthesis of ordered single crystal silicon nanowire arrays," Advanced Materials, vol. 13, pp. 1238-1241, 2001.
[23] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Applied Physics Letters vol. 4, pp. 89, 1964.
[24] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," Physical Review B, vol. 58, pp. 16024-16026, 1998.
[25] Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides," Science, vol. 291, pp. 1947-1949, 2001.
[26] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, "Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism," Chemical Physics Letters, vol. 323, pp. 224-228, 2000.
[27] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism," Physica E, vol. 9, pp. 305-309, 2001.
[28] D. C. Bell, Y. Wu, C. J. Barrelet, S. Gradecak, J. Xiang, B. P. Timko, and C. M. Lieber, "Imaging and analysis of nanowires," Microscopy Research and Technique, vol. 64, pp. 373-389, 2004.
[29] J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, "The influence of the surface migration of gold on the growth of silicon nanowires," Nature, vol. 440, pp. 69-71, 2006.
[30] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan, "Silicon nanowhiskers grown on < 111 > Si substrates by molecular-beam epitaxy," Applied Physics Letters, vol. 84, pp. 4968-4970, 2004.
[31] P. Werner, N. D. Zakharov, G. Gerth, L. Schubert, and U. Gosele, "On the formation of Si nanowires by molecular beam epitaxy," International Journal of Materials Research, vol. 97, pp. 1008-1015, 2006.
[32] A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science, vol. 279, pp. 208-211, 1998.
[33] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, "Nanoscale silicon wires synthesized using simple physical evaporation," Applied Physics Letters, vol. 72, pp. 3458-3460, 1998.
[34] T. Hanrath and B. A. Korgel, "Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals," Advanced Materials, vol. 15, pp. 437-440, 2003.
[35] D. B. Turner, "Electropolishing silicon in hydrofluoric acid solutions," Journal of the Electrochemical Society, vol. 105, pp. 402, 1958.
[36] R. L. Smith and S. D. Collins, "Porous Silicon Formation Mechanisms," Journal of Applied Physics, vol. 71, pp. R1-R22, 1992.
[37] V. Lehmann and U. Gosele, "Porous Silicon Formation - a Quantum Wire Effect," Applied Physics Letters, vol. 58, pp. 856-858, 1991.
[38] L. N. Aleksandrov and P. L. Novikov, "Morphology of porous silicon structures formed by anodization of heavily and lightly doped silicon," Thin Solid Films, vol. 330, pp. 102-107, 1998.
[39] A. G. Cullis and L. T. Canham, "Visible-Light Emission Due to Quantum Size Effects in Highly Porous Crystalline Silicon," Nature, vol. 353, pp. 335-338, 1991.
[40] G. Barillaro, A. Nannini, and M. Piotto, "Electrochemical etching in HF solution for silicon micromachining," Sensors and Actuators a-Physical, vol. 102, pp. 195-201, 2002.
[41] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[42] S. Chattopadhyay, X. L. Li, and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," Journal of Applied Physics, vol. 91, pp. 6134-6140, 2002.
[43] Y. Harada, X. L. Li, P. W. Bohn, and R. G. Nuzzo, "Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays," Journal of the American Chemical Society, vol. 123, pp. 8709-8717, 2001.
[44] S. Cruz, A. Honig-dOrville, and J. Muller, "Fabrication and optimization of porous silicon substrates for diffusion membrane applications," Journal of the Electrochemical Society, vol. 152, pp. C418-C424, 2005.
[45] H. Fang, Y. Wu, J. H. Zhao, and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology, vol. 17, pp. 3768-3774, 2006.
[46] S. Bauer, J. G. Brunner, H. Jha, Y. Yasukawa, H. Asoh, S. Ono, H. Bohm, J. P. Spatz, and P. Schmuki, "Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching," Electrochemistry Communications, vol. 12, pp. 565-569, 2010.
[47] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, "Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution," Applied Surface Science, vol. 255, pp. 6210-6216, 2009.
[48] V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, and S. H. Christiansen, "Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures," Journal of Physical Chemistry C, vol. 114, pp. 3798-3803, 2010.
[49] K. Tsujino and M. Matsumura, "Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst," Electrochemical and Solid State Letters, vol. 8, pp. C193-C195, 2005.
[50] K. Tsujino and M. Matsumura, "Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts," Electrochimica Acta, vol. 53, pp. 28-34, 2007.
[51] C. L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, "Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts," Journal of Materials Chemistry, vol. 18, pp. 1015-1020, 2008.
[52] S. Yae, T. Hirano, T. Matsuda, N. Fukumuro, and H. Matsuda, "Metal nanorod production in silicon matrix by electroless process," Applied Surface Science, vol. 255, pp. 4670-4672, 2009.
[53] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, and T. Osaka, "All-wet fabrication process for ULSI interconnect technologies," Electrochimica Acta, vol. 51, pp. 916-920, 2005.
[54] C. M. Das, P. K. Limaye, A. K. Grover, and A. K. Suri, "Preparation and characterization of silicon nitride codeposited electroless nickel composite coatings," Journal of Alloys and Compounds, vol. 436, pp. 328-334, 2007.
[55] P. Gorostiza, R. Diaz, J. Servat, F. Sanz, and J. R. Morante, "Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition," Journal of the Electrochemical Society, vol. 144, pp. 909-914, 1997.
[56] M. L. Chourou, K. Fukami, T. Sakka, S. Virtanen, and Y. H. Ogata, "Metal-assisted etching of p-type silicon under anodic polarization in HF solution with and without H2O2," Electrochimica Acta, vol. 55, pp. 903-912, 2010.
[57] S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, and H. Matsuda, "Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions," Electrochimica Acta, vol. 53, pp. 35-41, 2007.
[58] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advanced Materials, vol. 14, pp. 1164-1167, 2002.
[59] K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Advanced Materials, vol. 16, pp. 73-+, 2004.
[60] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, "Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles," Advanced Functional Materials, vol. 16, pp. 387-394, 2006.
[61] K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee, "Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching," Advanced Functional Materials, vol. 18, pp. 3026-3035, 2008.
[62] H. A. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, "Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles," Nano Letters, vol. 10, pp. 864-868, 2010.
[63] R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. L. Ginoux, "Porosity and Pore-Size Distributions of Porous Silicon Layers," Journal of the Electrochemical Society, vol. 134, pp. 1994-2000, 1987.
[64] Z. T. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, "Metal nanocrystal memories - Part I: Device design and fabrication," Ieee Transactions on Electron Devices, vol. 49, pp. 1606-1613, 2002.
[65] D. A. Heaps and P. R. Griffiths, "Band shapes in the infrared spectra of thin organic films on metal nanoparticles," Vibrational Spectroscopy, vol. 42, pp. 45-50, 2006.
[66] M. B. Cortie, "The weird world of nanoscale gold," Gold Bulletin, vol. 37, pp. 12-19, 2004.
[67] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," Journal of Physical Chemistry C, vol. 112, pp. 4444-4450, 2008.
[68] M. Ahn, R. K. Heilmann, and M. L. Schattenburg, "Fabrication of ultrahigh aspect ratio freestanding gratings on silicon-on-insulator wafers," Journal of Vacuum Science & Technology B, vol. 25, pp. 2593-2597, 2007.
[69] Y. Wang, R. M. Hernandez, D. J. Bartlett, J. M. Bingham, T. R. Kline, A. Sen, and T. E. Mallouk, "Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions," Langmuir, vol. 22, pp. 10451-10456, 2006.
[70] A. Kundu, J. H. Jang, J. H. Gil, C. R. Jung, H. R. Lee, S. H. Kim, B. Ku, and Y. S. Oh, "Micro-fuel cells - Current development and applications," Journal of Power Sources, vol. 170, pp. 67-78, 2007.
[71] S. Moghaddam, E. Pengwang, R. I. Masel, and M. A. Shannon, "A self-regulating hydrogen generator for micro fuel cells," Journal of Power Sources, vol. 185, pp. 445-450, 2008.
[72] V. Lysenko, F. Bidault, S. Alekseev, V. Zaitsev, D. Barbier, C. Turpin, F. Geobaldo, P. Rivolo, and E. Garrone, "Study of porous silicon nanostructures as hydrogen reservoirs," Journal of Physical Chemistry B, vol. 109, pp. 19711-19718, 2005.
[73] M. Enyo and T. Maoka, "The Overpotential Components on the Palladium Hydrogen Electrode," Journal of Electroanalytical Chemistry, vol. 108, pp. 277-292, 1980.
[74] M. E. Davis, "Ordered porous materials for emerging applications," Nature, vol. 417, pp. 813-821, 2002.
[75] M. J. Sailor, "Color me sensitive: Amplification and discrimination in photonic silicon nanostructures," Acs Nano, vol. 1, pp. 248-252, 2007.
[76] E. J. Anglin, L. Y. Cheng, W. R. Freeman, and M. J. Sailor, "Porous silicon in drug delivery devices and materials," Advanced Drug Delivery Reviews, vol. 60, pp. 1266-1277, 2008.
[77] S. P. Low, K. A. Williams, L. T. Canham, and N. H. Voelcker, "Generation of reactive oxygen species from porous silicon microparticles in cell culture medium," Journal of Biomedical Materials Research Part A, vol. 93A, pp. 1124-1131, 2010.