| 研究生: |
陳柏伍 Po-wu Chen |
|---|---|
| 論文名稱: |
利用高溫合成具辨識磺胺二甲嘧啶能力之分子拓印高分子 Preparation of sulfamethazine-imprinted polymer at high temperature |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 溶膠-凝膠 、分子拓印高分子 、吸附量 、選擇率 |
| 外文關鍵詞: | sol-gel, molecular imprinted polymer, adsorption, selectivity |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高溫180℃在四乙氧基矽烷(TEOS)或一甲基三乙氧基矽烷(MTEOS)單體存在下行溶膠-凝膠程序(sol-gel process)來製備磺胺二甲嘧啶(SMZ)分子拓印高分子。
實驗系統主要分為兩部分,首先第一部分選用TEOS為功能性單體進行溶膠-凝膠反應製備分子拓印高分子,並以兩階段升溫(200℃與300℃)之方式行進一步反應,最後再利用高溫鍛燒之方式移除SMZ。結果顯示透過改變進一步反應之時間可以提升SMZ之選擇率(α)從1.47 至1.82。此外藉由改變標準液之pH值來控制模板分子與相似物(磺胺甲噁唑,簡稱SMO)原始狀態之比例更可以大幅提升分子拓印高分子之α值從1.82 至23.89,以及較高之SMZ吸附量(AdSMZ),其AdSMZ與α之乘積(f)值最高可達102.72。
第二部分選用MTEOS為功能性單體來製備分子拓印高分子,並利用甲醇萃取之方式移除SMZ。結果顯示藉由調整溶液中SMZ之含量可以有效提升分子拓印高分子之AdSMZ與α值。此外調整溶液在高壓反應器內之填充比例,可以讓分子拓印高分子更具有多孔性使AdSMZ與α值提升。而藉由改變標準液之pH值來控制模板分子與相似物原始狀態之比例也可提升分子拓印高分子之辨識能力,但若以吸附能力與辨識能力兩者綜合來比較,未調整標準液之pH值效果比較好,其f值可達0.99。
比表面積測試儀(BET)之結果顯示以MTEOS為單體製備之MIP其比表面積為5.44(m2/g) , 以TEOS 為單體製備之MIP 其比表面積高達767.25(m2/g),表示以TEOS為單體製備之MIP較具有多孔性之結構,也有較高之AdSMZ、α值與f值。
Preparation of sulfamethazine (SMZ)-molecular imprinted polymer (MIP)composed of tetraethoxysilane (TEOS) or methyltriethoxysilane (MTEOS) bysol-gel method in high temperature (180℃) has been developed.
This study devided the experiment into two parts. For the first part, MIP was prepared by sol-gel method which using TEOS as a functional monomer, and then further reaction was carried out by increasing temperature in two steps (200℃ and 300℃). Finally, SMZ was removed by calcination method. The results showed that selectivity (α) of MIP was promoted from 1.47 to 1.82. Besides, it could change the ratio of original state of template and analogy (Sulfamethoxazole, SMO) by adjusting the pH value of standard solution. Therefore, α and f value were increased significantly from 1.82 to 23.89 and 4.69 to 98.43, respectively because of different ratio of SMZ and SMO.
For the second part, MIP was prepared by using MTEOS as a functional monomer, and SMZ was removed by extraction method. The results showed that MIP had better performaence by increasing the ratio of SMZ in reaction system. In addition, the higher porosity of MIP could be obtained by decreasing the ratio of filled volume of reactor. And adsorption of SMZ (AdSMZ) and α value of MIP were promoted becaused of porosity of MIP. It could also increase α value by adjusting the pH value of standard solution. Considering both AdSMZ and α value, the better performance of MIP could be achieved on the condition of non-adjusted standard solution, and MIP’s f value is 0.99.
The results of surface area analyzer (BET) showed that the specific surface area of MIP prepared by TEOS and MTEOS were 767.25(m2/g) and 5.44(m2/g), respectively. It meant MIP prepared by TEOS was more porous and had higher AdSMZ, α and f value than by MTEOS.
[1] E. Fischer, “Einfluss der configuration auf die wirkung derenzyme”, UBer. Dt. Chem. Ges., Vol 27, pp. 2985–1993, 1894.
[2] 許玉瑩,「利用矽氧烷化合物製備分子拓印高分子」,國立中央大學,碩士論文,民國94年。
[3] M. V. Polyakov, Z. F. Khim. “Adsorption properties of silica gel and its structure”, URuss. J. Phys. Chem., Vol 2, pp. 799–805, 1931.
[4] L. Pauling, “A theory of the structure and process of formation of antibodies”, UJ. Am. Chem. Soc.U, Vol 62, pp. 2643–2657, 1940.
[5] F. H. Dickey, “The Preparation of Specific Adsorbents”, PU. Natl. Acad. Sci. USA.U, Vol 35, pp. 227–229, 1949.
[6] G. Wulff, A. Sarhan, “The use of polymers with enzyme-analogous structures for the resolution of racemates”, UAngew. Chem. Int. Edit.U, Vol 11, pp. 341, 1972.
[7] G. Wulff, et al. “Enzyme-analogue Built Polymers, 5. On the Synthesis of Polymers Containing Chiral Cavities and Their Use for the Resolution of Racemates”, Makromol. Chem., Vol 178, pp. 2817–2824, 1977.
[8] L. Andersson, et al., “Imprinting of amino acid derivatives in macroporous polymers”, UTetrahedron Lett., Vol 25, pp. 5211–5214, 1984.
[9] Kenneth J. Shea, D.A. Spivak, and B. Sellergren, “Polymer Complements to Nucleotide Bases. Selective Binding of Adenine Derivatives to Imprinted Polymers”, UJ. Am. Chem. Soc.U, Vol 115, pp. 3368–3369, 1993
[10] F. L. Dickert, et al., “Molecular imprints as artificial antibodies- a new generation of chemical sensors”, USensor. Actuat. B-Chem.U, Vol 65, pp. 186–189, 2000.
[11] M. Lahav, et al., “Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors”, UAnal. Chem.U, Vol 73, pp. 720–723, 2001.
[12] G. Vlatakis, et al., “Drug assay using antibody mimics made by molecular imprinting”, UNatureU, Vol 361, pp. 645–647, 1993.
[13] D. A. Spivak, K. J. Shea, “Binding of nucleotide bases by imprinted polymers”, UMacromoleculesU, Vol 31, pp. 2160–2165, 1998.
[14] O. Ramström, K. Mosbach, “Synthesis and catalysis by molecularly imprinted materials”, UCurr. Opin. Chem. Biol.U, Vol 3, pp. 759–764, 1999.
[15] A. S. Abu-Surrah, Y. S. Al-Degs, “A molecular imprinted polymer via a salicylaldiminato-based cobalt(III) complex: A highly selective solid-phase extractant for anionic reactive dyes”, UJ. Appl. Polym. Sci.U, Vol 117, pp.2316–2323, 2010.
[16] M. Gallego-Gallegos, et al., “A new application of imprinted polymers: Speciation of organotin compounds”, UJ. Chromatogr. AU, Vol 1217, pp.3400–3407, 2010.
[17] Z. Lin, et al., “Organic-inorganic hybrid silica as supporting matrices for selective recognition of bovine hemoglobin via covalent immobilization”, UJ. Sep. Sci.U, Vol 32, pp.3980–3987, 2009.
[18] R. Rajkumar, et al., “Thermometric MIP sensor for fructosyl valine”, UBiosens. Bioelectron.U, Vol 23 pp. 1195–1199, 2003.
[19] G. Wulff, S. Schauhoff, “Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements”, UJ. Org. Chem.U, Vol 56, pp. 395–400, 1991.
[20] P. Curcio, et al., “Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte”, UMacromol. BiosciU., Vol 9, pp. 596–604, 2009.
[21] Buhani, et al., “Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium”, UDesalinationU, Vol 251 pp. 83–89, 2010.
[22] 鍾佳芸,「溶膠-凝膠法製備分子拓印高分子」,國立中央大學,碩士論文,民國92年。
[23] 李松泉,「以矽氧烷化合物製備溶膠—凝膠分子拓印高分子與其性質之研究」,國立中央大學,博士論文,民國92年。
[24] 莊峯琳,「利用溶膠—凝膠法製備磺胺二甲嘧啶無機分子拓印高分子」,國立中央大學,專題論文,民國97年。
[25] L. C. Klein, “Sol-gel processing of silicates”, UAnn. Rev. Mater. SciU., Vol 15, pp. 227–48, 1985.
[26] D. Y. Nadargi, A. V. Rao, “Methyltriethoxysilane: new precursor for synthesizing silica aerogels”, UJ. Alloy. Compd.U, Vol 467, pp. 397–404, 2009.
[27] A. M. Siouffi, “Silica gel-based monoliths prepared by the sol–gel method: facts and figures”, UJournal of Chromatography AU, Vol 1000, pp.801–818, 2003.
[28] 彭均莉,「以溶膠—凝膠法製備磺胺二甲嘧啶無機分子拓印高分子」,國立中央大學,碩士論文,民國97年。
[29] 魏宏森,「高選擇率或吸附量咖啡因拓印高分子之製備」,國立中央大學,博士論文,民國95年。