跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉鎮宇
Chen-Yu Liu
論文名稱: 奈米碳管電容式生物感測器對於DNA的檢測
The capacitor-based carbon nanotube biosensor for DNA detection.
指導教授: 鄔蜀威
Shu-Wei Wu
丁志華
Jyh-Hua Ting
黃豐元
Fuang-Yuan Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 電容氮化矽去氧核醣核酸奈米碳管生物感測器
外文關鍵詞: Carbon nanotubes, Capacitance, biosensor, DNA, Silicon nitride
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討奈米碳管對於去氧核醣核酸生物感測器的研究,元件以電容器結構的作為量測重點,目的在於提升感應度與靈敏性。
    實驗可分為三部分,首先我們將DNA以化學處理方式固定於氮化矽基板上並進行雜交實驗,來做為日後的控制實驗組;接著在氮化矽基板上成長奈米碳管,然後將DNA固定於上,一樣進行雜交實驗;最後再將基板材料更換為高介電常數材料五氧化二鉭,同樣地重複以上實驗。
    在結果的量測與分析中,則是著重於此電容式生物感應器的電容電壓特性曲線上,因載子在空乏狀態時會受DNA自身帶負電的影響,而使圖形產生了曲線偏移現象,因此我們可用來確認DNA的固定化與雜交,另外利用公式後可進一步推算DNA固定化後密度。


    This study focused on the carbon nanotubes biosensors for deoxyribonucleic acid. We measured the capacitor structure as key aim then improve the sensitivity and selectively.
    The experiment could be divided into three parts. First part, we tried the DNA immobilization and hybridization experiments on silicon nitride which was the control sample in the all experiments. Then we synthesized the carbon nanotubes on the bare silicon nitride and repeated the DNA immobilization and hybridization again. In the future, we plan that try to use the high dielectric materials instead of the silicon nitride and repeat both the DNA immobilization and hybridization again.
    In the experiment results and analysis, we focused on the capacitance-voltage curve of the capacitor-based biosensor. The curve will perform the voltage-shift due to DNA molecules are negatively charged. Therefore, we could check both the immobilization and hybridization then calculated the density of DNA after hybridization.

    中文摘要 i 英文摘要 v 誌謝 vi 目錄 vi 圖目錄 x 表目錄 xv 符號說明 xvi 第一章 緒論 1 1-1 介紹 1 1-2 文獻回顧 2 1-3 實驗動機 6 第二章 奈米碳管的介紹 7 2-1 奈米碳管的起源 8 2-2成長機制 9 2-3 合成奈米碳管的方法 11 2-4結構及其特性 16 2-5 應用 20 第三章 實驗方法與設備 24 3-1 實驗流程 25 3-2 試片製備 26 3-2-1 Control sample製備 27 3-2-2 奈米碳管試片製備 28 3-2-3 High-k材料試片製備 30 3-3 實驗步驟 32 3-3-1實驗步驟方法 34 3-3-2參考電極之製備 34 3-3-3 DNA定量分析 36 3-4 製程設備與量測設備介紹 39 3-4-1 製程設備介紹 39 3-4-2 量測設備介紹 43 3-5 元件設計與光罩介紹 47 3-6 奈米碳管品質的分析 52 第四章 結果與討論 54 4-1以氮化矽為基板之控制試片 55 4-1-1 接觸角量測系統 55 4-1-2 AFM原子力探針顯微鏡 59 4-1-3 FTIR 62 4-1-4 奈米元件量測系統-電容電壓特性分析 63 4-2添加奈米碳管的生物感測器 76 4-2-1 奈米碳管的結構與品質(SEM、TEM與Raman) 76 4-2-2 接觸角量測系統 80 4-2-3 Raman光譜分析 83 4-2-4 電容電壓特性 84 4-3 高介電薄膜生物感測器 90 4-3-1 X-ray diffraction 的分析 91 第五章 總結 92 參考文獻 93

    [1] T. Sakata, Y. Miyahara “DNA Sequencing Based on Intrinsic Molecular Charges”, Angew. Chem. Int. Ed., 45 (2006) 2225 –2228
    [2] T. Sakataa, M. Kamahorib, Y. Miyaharaa, “Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor”, Materials Science and Engineering C, 24 (2004) 827–832
    [3] T. Sakata, Y. Miyahara, “Detection of DNA recognition events using multi-well field effect devices”, Biosensors and Bioelectronics, 21 (2005) 827–832
    [4] J. Li, Y. Zhang, T. Yang, H. Zhang, Y. Yang, P. Xiao, “DNA biosensor by self-assembly of carbon nanotubes and DNA to detect riboflavin”, Materials Science and Engineering C, 29 (2009) 2360–2364
    [5] S.G. Wang, R. Wang, P.J. Sellin, Qing Zhang, “DNA biosensors based on self-assembled carbon nanotubes”, Biochemical and Biophysical Research Communications, 325 (2004) 1433–1437
    [6] K. V. Singh, R. R. Pandey, X. Wang, R. Lake, C. S. Ozkan, K. Wang, M. Ozkan, ” Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: Nanocomponents for molecular level electronics”, Carbon, 44 (2006) 1730–1739
    [7] G. wang, Y. Li, Y. Huang, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, 109, 21,(2005) 10957-10961
    [8] Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker, “Room- temperature transistor based on a single carbon nanotube”, Nature, 393 (1998) 49-52
    [9] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56-58
    [10] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363 (1993) 603-605
    [11] D.S. Bethune, C.H. Kiang, M.S. Deveries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layers wells”, Nature, 363 (1993) 605-607
    [12] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, 26 (1972) 51-62
    [13] G. G. Tibbetts et al., “Vapor-grown carbon fibers: status and prospectus” , Carbon, 27 (1989) 745.
    [14] 陳紹良,以微波化學氣相沉積法成長奈米碳管之研究,國立中央大學碩士論文,2003
    [15] Sergei Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon, 40 (2002) 417–423
    [16] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey, J. Chen, “Continuous production of aligned carbon nanotubes: a step closer to commercial realization”, Chem. Phys. Lett., 303 (1999) 467-474
    [17] Y.S. Woo et al., “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11(2002)59-66
    [18] Th. Henning, F. Salama, “Carbon in the universe”, Science, 28 (1998) 2204-2210
    [19] W. Hoenlein et al.,“Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, 27 (2004) 629-634
    [20] 成會明、張勁燕,“奈米碳管”, 五南圖書出版股份有限公司, 2006 , 164
    [21] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, “Carbon nanotube in interconnect applications” , Microelectrinic Engineering, 64 (2002) 399-408
    [22] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display” , Applied Physics Letters, 75 (1999) 3129-3132
    [23] G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, O. Zhou, “Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field- emission cathode” , Applied Physics Letters, 81 (2002) 355-358
    [24] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. Gangloff, J. P. Schnell, V. Semet, V. Thien, Binh, O. Groening, “Carbon nanotubes as field emission sources” , Journal of Materials Chemistry, 14 (2004) 933-943
    [25] A. Star, J. C. P. Gabriel, K. Bradley, G. Gruner, “Electronic detection of specific protein binding using nanotube FET devices” , Nano Letters, 3 (2003) 459-463
    [26] J. Koehne, J. Li, A. M. Cassell, H. Chen, Q. Ye, H. T. Ng, J. Han, M. Meyyappan, “The fabrication and electrochemical characterization of carbon nanotube nanoelectrode arrays”, Journal of Materials Chemistry, 14 (2004) 676-684
    [27] M.J. Sch¨oning*, D. Brinkmann, D. Rolka, C. Demuth, A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure”, Sensors and Actuators B, 111–112 (2005) 423–429
    [28] http://tong.dxy.cn/experiment/430/431/432/21790.htm
    [29] J. Diao, D. Ren, J. R. Engstrom, K. H. Lee*, “A surface modiWcation strategy on silicon nitride for developing biosensors”, Analytical Biochemistry, 343 (2005) 322–328
    [30]http://www.cem.msu.edu/~reusch/VirtualText/Spectrpy/InfraRed/infrared.htm#ir1
    [31] M. Turek, L. Ketterer, M. Claßen, H. K. Berndt, G. Elbers, P. Krüger, M. Keusgen and M. J. Schöning*, “Development and Electrochemical Investigations of an EIS- (Electrolyte-Insulator-Semiconductor) based Biosensor for Cyanide Detection”, Sensors, 7 (2007) 1415-1426
    [32] P. D. Tam*, N. V. Hieu*, N. D. Chien, A. T. Le, M. A. Tuan, “DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection”, Journal of Immunological Methods, 350 (2009) 118–124

    QR CODE
    :::