跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張毓玲
Yu-Ling Chang
論文名稱: 使用電流級距控制器以達到寬操作頻率範圍之數位式鎖相迴路
A Digital PLL Using Current-Step Controller for Wide Operating Range Application
指導教授: 鄭國興
Kuo-Hsing Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 可調變除數之除頻器寬操作頻率範圍數位迴路濾波器電流級距控制器數位至電流轉換器頻率合成器鎖相迴路時間至數位碼轉換器
外文關鍵詞: programmable divider, wide operating frequency range, digital loop filter, digital-to-current converter, current-step controller, time-to-digital converter, phase-locked loop (PLL), Frequency synthesizers
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出具寬操作頻率範圍之數位式鎖相迴路,其架構採用數位迴路濾波器取代由電阻及電容所組成之被動濾波器,以達到降低面積之效果;同時利用降低數位迴路濾波器取樣頻率之方法,使其在輸入參考頻率與除頻器之除數同時變動時,鎖相迴路系統皆為穩定操作。其中,使用所提出的具有電流級距控制器之數位至電流轉換器,除了使數位控制振盪器之轉換增益較為線性外,同時也可提高其頻率調控之解析度,達成低時脈抖動之設計。
    此數位式鎖相迴路採用台積電 0.18 um 1P6M CMOS製程實現,並經由量測驗證其操作頻率範圍可達到200 MHz至1.4 GHz,且在操作頻率為800 MHz時,其峰對峰時脈抖動量(peak-to-peak jitter)為4.6%。其在供應電壓為1.8 V且輸出時脈為1 GHz之操作下消耗功率為7.27 mW,核心面積為0.04 mm2。此數位式鎖相迴路在與相同輸出頻率的倍頻範圍條件相比下,所耗費之面積極小,因此極為適合於系統晶片之應用。


    In this thesis, a digital phase-locked loop (DPLL) with the wide operating range is presented. The architecture of the proposed DPLL uses a digital loop filter to replace passive loop filter for area saving purpose. The DPLL maintains the system stability by reducing the sampling frequency when the reference clock and the multiplication factor are varied. The linearity of the gain and timing resolution of digital-controlled oscillator are improved by using the proposed digital-to-current converter with current-step controller (CSC). Thus, the CSC used here can enhance the jitter performance.
    The proposed DPLL is implemented in a 0.18-um TSMC 1P6M CMOS process. It can operate from 200 MHz to 1.4 GHz and has a 4.6% peak-to-peak jitter at 800 MHz. The power consumption and the core area are 7.27 mW at 1 GHz and 0.04 mm2, respectively. In this work, the proposed DPLL can obtain the small area cost under the same multiplication range. Therefore, it is useful for system on chip (SoC) systems.

    圖目錄 vi 表目錄 ix 第1章 導論 1 1.1 鎖相迴路之應用 1 1.2 研究動機 2 1.3 論文組織 3 第2章 鎖相迴路先前技術探討 4 2.1 鎖相迴路種類簡介 4 2.1.1 線性式鎖相迴路 4 2.1.2 數位式鎖相迴路 5 2.1.3 全數位式鎖相迴路 5 2.2 可攜式之全數位式鎖相迴路 [6] 6 2.3 動態串聯頻率計數迴路之全數位式鎖相迴路 [7] 8 2.4 自我偏壓之高除數之數位式鎖相迴路 [8] 9 2.5 具動態快速追鎖頻率漂動之數位式鎖相迴路 [9] 11 第3章 鎖相迴路系統分析 14 3.1 數位式鎖相迴路分析 14 3.2 全數位式鎖相迴路分析 17 3.3 MATLAB之模擬與探討 22 第4章 數位式鎖相迴路實現 27 4.1 電路架構 27 4.2 具有電流級距控制器之數位至電流轉換器 28 4.3 電流控制振盪器 31 4.4 時間至數位碼轉換器 33 4.5 數位迴路濾波器 37 4.6 相位頻率偵測器 39 4.7 可調變除數之除頻器 41 4.8 鎖相迴路模擬結果 43 第5章 晶片佈局與測試考量 44 5.1 晶片佈局考量 44 5.2 晶片佈局後模擬 47 5.2.1 晶片佈局後模擬結果 47 5.3 晶片測試考量 54 5.4 量測結果 57 第6章 總結與未來展望 63 6.1 總結 63 6.2 未來研究方向 64 參考文獻 65

    [1] C. -Y. Yang, ”Phase-Locked Loops,” National Chung-Hsing University.
    [2] DESIGN & REUSE:Catalyst of Collaborative IP Based SoC Design. Available:http://www.design-reuse.com/
    [3] Network Dictionary. Available:http://www.networkdictionary.cn/hardware/soc.php
    [4] B. Razavi, “Design of Analog CMOS Integrated Circuit,” New York:McGraw-Hill, 2001.
    [5] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, ”An All-Digital Phase-Locked Loop with 50-Cycle Lock Time Suitable for High-Performance microprocessors,” IEEE J. Solid-State Circuits, vol. 31, no. 30, pp. 412-422, Apr. 1995.
    [6] C. -C. Chung, and C. -Y. Lee, “An All-Digital Phase-Locked Loop for High-Speed Clock Generation," IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.
    [7] P. -L. Chen, C. -C. Chung, J. -N. Yang, and C. -Y. Lee, “A Clock Generator With Cascaded Dynamic Frequency Counting Loops for Wide Multiplication Range Applications,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1275-1285, Jun. 2006.
    [8] J. G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankarads, “Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL,” IEEE J. Solid-State Circuits, vol. 38, no. 11, pp. 1795-1803, Nov. 2003.
    [9] V. Kratyuk, P. K. Hanumolu, K. Mayaram, and U. -K. Moon, ”A 0.6GHz to 2GHz Digital PLL with Wide Tracking Range,” IEEE Custom Integrated Circuits Conference, 2007, pp. 305-308.
    [10] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman , “A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42-51, Jan. 2008.
    [11] P. K. Hanumolu, M. Brownlee, K. Mayaram, and U. -K. Moon, “Analysis of Charge-Pump Phase-Locked Loops," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9, pp. 1665-1674, Sep. 2004.
    [12] K. Lim, C. -H. Park, D. -S. Kim, and B. Kim, “A Low-Noise Phase-Locked Loop Design by Loop Bandwidth Optimization,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 807-815, Jun. 2000.
    [13] J. Hein, and J. W. Scott, “Z-domain Model for Discrete-Time PLL''s," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 35, no. 11, pp. 1393-1400, Nov. 1988.
    [14] A. Spalvieri, and M. Magarini, “Wiener’s Analysis of the Discrete-Time Phase-Locked Loop With Loop Delay,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no.6, Jun. 2008.
    [15] N. D. Dalt, “A Design-Oriented Study of the Nonlinear Dynamics of Digital Bang-Bang PLLs," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 1, pp. 21-31, Jan. 2005.
    [16] R. B. Staszewski and P. T. Balsara, “Phase-domain all-digital phase-locked loop," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 3, pp. 159-163, Mar. 2005.
    [17] V. Kratyuk, P. K. Hanumolu, U. -K. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 247-251, Mar. 2007.
    [18] S. Haykin, and B. V. Veen, ”Signals and Systems,” Wiley, 2003.
    [19] D. R. Stephens, “Phase-Locked Loops for Wireless Communications: Digital, Analog and Optical Implementations,” Kluwer Academic Publishers, 2002.
    [20] J. G. Maneatis and M. A. Horowitz, “Precise Delay Generation Using Coupled Oscillators,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1273-1282, Dec. 1993.
    [21] E. RZiisiinen-Ruotsalainen, T. Rahkonen, and J. Kostamovaara, “A Low-Power CMOS Time-to-Digital Converter," IEEE J. Solid-State Circuits, vol. 30, no. 9, pp. 984-990, Sep. 1995.
    [22] P. Dudek, S. Szczepan’ski, and V. Hatfield, “A High-Resolution CMOS Time-to-Digital Converter Utilizing a Vernier Delay Line," IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000.
    [23] M. Lee, and A. Abidi, “A 9b, 1.25 ps Resolution Coarse-Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, Apr. 2008.
    [24] B. Nikolic, V. G. Oklobdzija, V. Stajanovic, W. Jia, and et al., "Improved Sense-Amplifier Based Flip-Flop : Design and Measurements," IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 876-883, Jun. 2000.
    [25] H. -Y. Huang , J. -C. Liu, and K. -H. Cheng, “All digital PLL using Pulse-Based DCO”, IEEE International Conference on Electronics, Circuits and Systems, Dec. 2007, pp. 1268-1271.
    [26] S. Kim, K. Lee, Y. Moon, D. -K. Jeong, and et al., “A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL,” IEEE J. Solid-State Circuit, vol. 32, no. 5, pp. 691-700, May. 1997.
    [27] H. -H. Chang and J.-C. Wu, “A 723-MHz 17.2mw CMOS Programmable Counter,” IEEE J. Solid-State Circuits, vol. 33, no. 10, pp.1572-1575, Oct. 1998.
    [28] K. -H. Choi, J. -B. Shin, J. -Y. Sim, and H. -J Park, ”An Interpolating Digitally-Controlled Oscillator for a Wide-Range All-Digital PLL”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 9, pp. 2055-2063, Sep. 2009.
    [29] Z. Cao, Y. Li, and S. Yan, “A 0.4 ps-RMS-Jitter 1-3 GHz Ring-Oscillator PLL Using Phase-Noise Preamplification,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 876-883, Sep. 2008.
    [30] M. Brownlee, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 0.5 to 2.5GHz PLL with Fully Differential Supply-Regulated Tuning” IEEE SSCC, Dig. Tech. Papers, pp. 588-589, Feb. 2006.

    QR CODE
    :::