跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉俊麟
Chun-Lin Yeh
論文名稱: Distinct Action Modes of Antimicrobial Peptides for Antibiotic Activity and Cytotoxicity by Interplaying Intra-peptide and Lipid-specific Cation-pi Interactions
指導教授: 蔡惠旭
Hui-Hsu Gavin Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 抗菌胜肽陽離子-pi 作用力
外文關鍵詞: antimicrobial peptides, cation-pi interaction
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於抗生素具有容易讓細菌產生抗藥性的缺點,應此具有化學和結構豐富性的抗菌胜肽 (AMP) 便成為下一代抗菌化合物的重要研究目標。然而當我們要從頭設計和優化新的 AMP 所面臨的關鍵挑戰之一便是對抗菌活性和細胞毒性的分子機制知之甚少。在這裡,我們利用分子動力學 (MD) 模擬以及傘型採樣 (US)的方式來模擬兩種具有廣譜體外活性的 AMP (arenicin-3 和 AA139) 在穿膜過程的反應,並提出了一種可設計的 AMP 的作用機制來提升其抗菌活性和降低其溶血性。
    當AMP在靠近帶較多陰離子的細菌細胞膜膜時,AMP便會 “開啟”它們的抗菌活性模式:AMP 的陽離子殘基和細菌膜的脂質之間形成了顯著的鹽橋,從而降低了它們的抗菌胜肽內部的陽離子-π相互作用。因此,芳香族殘基就更加容易與脂質之間形成陽離子-π作用,利用這個作用力讓AMP在穿膜的過程可以彎曲脂質的頭部基團以形成環形孔,從而提升抗菌活性。另外我們也觀察到AMP會與脂質頭部基團結合形成穩定的π - 陽離子(膽鹼)- π基序,其在結構和能量上都非常穩定。另一方面,在帶中性電荷的真核細胞質膜中,AMP則傾向 “關閉”它們的活性模式:AMP 的陽離子殘基和真核細胞膜的中性電荷脂質之間形成的鹽橋要少得多,因此顯著的抗菌胜肽內形成陽離子-π對。在這種模式下,AMP 與帶中性電荷的脂質膜的相互作用要少得許多,這在能量上不利於它的穿膜反應,從而降低它們的溶血性。我們認為我們所提出的這種新的AMP 作用機制是有助於未來設計和優化具有低毒性且強效殺菌力的 AMP 的發展。


    With the failure of antibiotics, the discovery of next-generation antibacterial compounds based on chemically and structurally abundant antimicrobial peptides (AMPs) is promising. One of the crucial challenges for systemic rational design and optimization of de novo AMPs is that molecular mechanisms of antimicrobial activity and cytotoxicity are poorly understood. Here, we present designable action modes of AMPs for their antimicrobial activity and cytotoxicity derived from the molecular dynamics (MD) simulations in conjunction with umbrella sampling (US) for the membrane translocation of two AMPs with broad-spectrum in vitro activity, arenicin-3 and AA139. We show inside the anionic bacterial membrane, cationic and aromatic AMPs “turn on” their antimicrobial active mode: Significant salt bridges between cationic residues of AMPs and lipids of the bacterial membrane are formed and thus unpair their intra-peptide cation- interactions. Consequently, aromatic residues form lipid-specific cation- pairs, which can bend the head groups of lipids for forming toroidal pores and thus promote antimicrobial activity. A stablecation(choline) motif binding the head group of lipid, which is structurally and energetically suitable for being lipid head groups is observed. On the other hand, within the neutrally charged eukaryotic plasma membranes, cationic and aromatic AMPs “turn off” their active mode: much fewer salt bridges between cationic residues of AMPs and neutrally charged lipids of eukaryotic membranes are formed, and consequently significant intra-peptide cation- pairs are formed. In this mode, AMPs have much fewer interactions with a neutrally-charged lipid membrane, which is energetically unfavorable for their membrane translocation and thus reduces their cytotoxicity. Our proposed action mechanisms of AMPs give us comprehensible guides for rational design and optimization of potent AMPs with low toxicity.

    Contents 摘要 i Abstract ii Contents iii List of Table iv List of Figure v Introduction 1 Computational Methods 5 Simulation Systems 5 Molecular Dynamics Simulations 6 Umbrella Sampling 7 Analysis 9 Results 11 Free Energy Profiles for the Translocation of Arenicin-3 and AA139 into POPC and POPC/POPG Bilayer 11 Membrane Perturbation and Water Permeation through Arenicin-3 and AA139 Translocation 15 Cation-π Interactions and Salt Bridges of Arenicin-3 and AA139 Through Membrane Translocation 24 Analysis of π-π Motifs of AMPs 41 Discussion 46 Conclusion 50 References 51 Supporting information 57

    1. US CDC. Antibiotic Resistance Threats in the United States. http://www.cdc.gov/drugresistance/threat-report-2013/.
    2. McKenna, M., Antibiotic resistance: the last resort. Nature 2013, 499 (7459), 394-6.
    3. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 1987, 84 (15), 5449-53.
    4. Mookherjee, N.; Anderson, M. A.; Haagsman, H. P.; Davidson, D. J., Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020, 19 (5), 311-332.
    5. Huan, Y.; Kong, Q.; Mou, H.; Yi, H., Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020, 11, 582779.
    6. Pirtskhalava, M.; Vishnepolsky, B.; Grigolava, M.; Managadze, G., Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane. Pharmaceuticals (Basel) 2021, 14 (5).
    7. Waghu, F. H.; Barai, R. S.; Gurung, P.; Idicula-Thomas, S., CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2016, 44 (D1), D1094-7.
    8. Wang, G.; Li, X.; Wang, Z., APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016, 44 (D1), D1087-93.
    9. Pirtskhalava, M.; Amstrong, A. A.; Grigolava, M.; Chubinidze, M.; Alimbarashvili, E.; Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M., DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Research 2021, 49 (D1), D288-D297.
    10. Chen, C. H.; Starr, C. G.; Troendle, E.; Wiedman, G.; Wimley, W. C.; Ulmschneider, J. P.; Ulmschneider, M. B., Simulation-Guided Rational de Novo Design of a Small Pore-Forming Antimicrobial Peptide. Journal of the American Chemical Society 2019, 141 (12), 4839-4848.
    11. Brogden, K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005, 3 (3), 238-50.
    12. Epand, R. M.; Vogel, H. J., Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462 (1-2), 11-28.
    13. Bechinger, B., The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. Biochim Biophys Acta 1999, 1462 (1-2), 157-83.
    14. Vishnepolsky, B.; Gabrielian, A.; Rosenthal, A.; Hurt, D. E.; Tartakovsky, M.; Managadze, G.; Grigolava, M.; Makhatadze, G. I.; Pirtskhalava, M., Predictive Model of Linear Antimicrobial Peptides Active against Gram-Negative Bacteria. J Chem Inf Model 2018, 58 (5), 1141-1151.
    15. Lee, E. Y.; Fulan, B. M.; Wong, G. C. L.; Ferguson, A. L., Mapping membrane activity in undiscovered peptide sequence space using machine learning. Proceedings of the National Academy of Sciences 2016, 113 (48), 13588-13593.
    16. Veltri, D.; Kamath, U.; Shehu, A., Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34 (16), 2740-2747.
    17. Chen, Y.; Guarnieri, M. T.; Vasil, A. I.; Vasil, M. L.; Mant, C. T.; Hodges, R. S., Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2007, 51 (4), 1398-406.
    18. Jiang, Z. Q.; Vasil, A. I.; Gera, L.; Vasil, M. L.; Hodges, R. S., Rational Design of alpha-Helical Antimicrobial Peptides to Target Gram-negative Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge, 'Specificity Determinants,' Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Therapeutic Ratio. Chem Biol Drug Des 2011, 77 (4), 225-240.
    19. Yin, L. M.; Edwards, M. A.; Li, J.; Yip, C. M.; Deber, C. M., Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 2012, 287 (10), 7738-45.
    20. Deslouches, B.; Steckbeck, J. D.; Craigo, J. K.; Doi, Y.; Mietzner, T. A.; Montelaro, R. C., Rational Design of Engineered Cationic Antimicrobial Peptides Consisting Exclusively of Arginine and Tryptophan, and Their Activity against Multidrug-Resistant Pathogens. Antimicrob Agents Ch 2013, 57 (6), 2511-2521.
    21. Deslouches, B.; Phadke, S. M.; Lazarevic, V.; Cascio, M.; Islam, K.; Montelaro, R. C.; Mietzner, T. A., De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity. Antimicrob Agents Chemother 2005, 49 (1), 316-22.
    22. Elliott, A. G.; Huang, J. X.; Neve, S.; Zuegg, J.; Edwards, I. A.; Cain, A. K.; Boinett, C. J.; Barquist, L.; Lundberg, C. V.; Steen, J.; Butler, M. S.; Mobli, M.; Porter, K. M.; Blaskovich, M. A. T.; Lociuro, S.; Strandh, M.; Cooper, M. A., An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. Nat Commun 2020, 11 (1).
    23. Craven, T. W.; Cho, M. K.; Traaseth, N. J.; Bonneau, R.; Kirshenbaum, K., A Miniature Protein Stabilized by a Cation-pi Interaction Network. J Am Chem Soc 2016, 138 (5), 1543-50.
    24. Zhong, W.; Gallivan, J. P.; Zhang, Y.; Li, L.; Lester, H. A.; Dougherty, D. A., From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci U S A 1998, 95 (21), 12088-93.
    25. Pless, S. A.; Millen, K. S.; Hanek, A. P.; Lynch, J. W.; Lester, H. A.; Lummis, S. C. R.; Dougherty, D. A., A Cation-pi Interaction in the Binding Site of the Glycine Receptor Is Mediated by a Phenylalanine Residue. J Neurosci 2008, 28 (43), 10937-10942.
    26. Lolicato, M.; Arrigoni, C.; Mori, T.; Sekioka, Y.; Bryant, C.; Clark, K. A.; Minor, D. L., Jr., K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 2017, 547 (7663), 364-368.
    27. Yen, T. J.; Lolicato, M.; Thomas-Tran, R.; Du Bois, J.; Minor, D. L., Jr., Structure of the saxiphilin:saxitoxin (STX) complex reveals a convergent molecular recognition strategy for paralytic toxins. Sci Adv 2019, 5 (6), eaax2650.
    28. Waheed, Q.; Khan, H. M.; He, T.; Roberts, M.; Gershenson, A.; Reuter, N., Interfacial Aromatics Mediating Cation-pi Interactions with Choline-Containing Lipids Can Contribute as Much to Peripheral Protein Affinity for Membranes as Aromatics Inserted below the Phosphates. J Phys Chem Lett 2019, 10 (14), 3972-3977.
    29. Petersen, F. N.; Jensen, M. O.; Nielsen, C. H., Interfacial tryptophan residues: a role for the cation-pi effect? Biophys J 2005, 89 (6), 3985-96.
    30. Hirano, Y.; Gao, Y. G.; Stephenson, D. J.; Vu, N. T.; Malinina, L.; Simanshu, D. K.; Chalfant, C. E.; Patel, D. J.; Brown, R. E., Structural basis of phosphatidylcholine recognition by the C2-domain of cytosolic phospholipase A2alpha. Elife 2019, 8, e44760.
    31. Goh, B. C.; Wu, H.; Rynkiewicz, M. J.; Schulten, K.; Seaton, B. A.; McCormack, F. X., Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry 2016, 55 (26), 3692-701.
    32. Weber, D. K.; Yao, S.; Rojko, N.; Anderluh, G.; Lybrand, T. P.; Downton, M. T.; Wagner, J.; Separovic, F., Characterization of the Lipid-Binding Site of Equinatoxin II by NMR and Molecular Dynamics Simulation. Biophys J 2015, 108 (8), 1987-96.
    33. Broemstrup, T.; Reuter, N., How does proteinase 3 interact with lipid bilayers? Phys Chem Chem Phys 2010, 12 (27), 7487-96.
    34. Roberts, M. F.; Khan, H. M.; Goldstein, R.; Reuter, N.; Gershenson, A., Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018, 118 (18), 8435-8473.
    35. Yang, B.; Pu, M.; Khan, H. M.; Friedman, L.; Reuter, N.; Roberts, M. F.; Gershenson, A., Quantifying transient interactions between Bacillus phosphatidylinositol-specific phospholipase-C and phosphatidylcholine-rich vesicles. J Am Chem Soc 2015, 137 (1), 14-7.
    36. Grauffel, C.; Yang, B.; He, T.; Roberts, M. F.; Gershenson, A.; Reuter, N., Cation−π Interactions As Lipid-Specific Anchors for Phosphatidylinositol-Specific Phospholipase C. Journal of the American Chemical Society 2013, 135 (15), 5740-5750.
    37. Grauffel, C.; Yang, B.; He, T.; Roberts, M. F.; Gershenson, A.; Reuter, N., Cation-pi interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C. J Am Chem Soc 2013, 135 (15), 5740-50.
    38. Gaede, H. C.; Yau, W. M.; Gawrisch, K., Electrostatic contributions to indole-lipid interactions. J Phys Chem B 2005, 109 (26), 13014-23.
    39. Yau, W. M.; Wimley, W. C.; Gawrisch, K.; White, S. H., The preference of tryptophan for membrane interfaces. Biochemistry 1998, 37 (42), 14713-8.
    40. Blaser, G.; Sanderson, J. M.; Wilson, M. R., Free-energy relationships for the interactions of tryptophan with phosphocholines. Org Biomol Chem 2009, 7 (24), 5119-28.
    41. Chakrapani, N.; Nigam, A.; Shanthi, V.; Sethumadhavan, R.; Ramanathan, K., Computational Investigation of Cation-<I>π</I> Interactions in the Structural Stability of Antimicrobial Peptides. Journal of Bioinformatics and Intelligent Control 2013, 2 (1), 34-39.
    42. Spodsberg, N. Polypeptides having antimicrobial activity and polynucleotides encoding same. WO 2007/023163 A1, 2007.
    43. Liu, H.; Fu, H.; Shao, X.; Cai, W.; Chipot, C., Accurate Description of Cation−π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. Journal of Chemical Theory and Computation 2020, 16 (10), 6397-6407.
    44. Jo, S.; Kim, T.; Iyer, V. G.; Im, W., CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry 2008, 29 (11), 1859-1865.
    45. Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Dávila-Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.; Klauda, J. B.; Im, W., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. Journal of Computational Chemistry 2014, 35 (27), 1997-2004.
    46. Phillips, J. C.; Hardy, D. J.; Maia, J. D. C.; Stone, J. E.; Ribeiro, J. V.; Bernardi, R. C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M. C. R.; Radak, B. K.; Skeel, R. D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L. V.; Schulten, K.; Chipot, C.; Tajkhorshid, E., Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics 2020, 153 (4), 044130.
    47. Huang, J.; MacKerell Jr, A. D., CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry 2013, 34 (25), 2135-2145.
    48. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics 1983, 79 (2), 926-935.
    49. Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
    50. P.Valleau, G. M. T., Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chemical Physics Letters 1974.
    51. G.M.TorrieJ.P.Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics 1977.
    52. Edwards, I. A. β-hairpin antimicrobial peptides: structure, function and mode of action. The University of Queensland, 2018.
    53. Sgrignani, J.; Magistrato, A., QM/MM MD Simulations on the Enzymatic Pathway of the Human Flap Endonuclease (hFEN1) Elucidating Common Cleavage Pathways to RNase H Enzymes. ACS Catalysis 2015, 5 (6), 3864-3875.
    54. Voice, A. T.; Tresadern, G.; Twidale, R. M.; van Vlijmen, H.; Mulholland, A. J., Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations. Chem Sci 2021, 12 (15), 5511-5516.
    55. Kästner, J., Umbrella sampling. WIREs Computational Molecular Science 2011, 1 (6), 932-942.
    56. ROSENBERG, S. K. a. J. M., Mu1 t i dimensional Fr e e - Ene r gy Calculations Using the Weighted Histogram Analysis Method. Journal of Computational Chemistry 1995.
    57. Gapsys, V.; de Groot, B. L.; Briones, R., Computational analysis of local membrane properties. Journal of Computer-Aided Molecular Design 2013, 27 (10), 845-858.
    58. Infield, D. T.; Rasouli, A.; Galles, G. D.; Chipot, C.; Tajkhorshid, E.; Ahern, C. A., Cation-pi Interactions and their Functional Roles in Membrane Proteins. J Mol Biol 2021, 433 (17), 167035.
    59. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38.
    60. Matsuzaki, K., Magainins as paradigm for the mode of action of pore forming polypeptides. Bba-Rev Biomembranes 1998, 1376 (3), 391-400.
    61. Imura, Y.; Choda, N.; Matsuzaki, K., Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J 2008, 95 (12), 5757-65.
    62. Bylund, J.; Christophe, T.; Boulay, F.; Nyström, T.; Karlsson, A.; Dahlgren, C., Proinflammatory activity of a cecropin-like antibacterial peptide from Helicobacter pylori. Antimicrob Agents Chemother 2001, 45 (6), 1700-4.
    63. Lin, F.-Y.; MacKerell Jr, A. D., Improved Modeling of Cation-π and Anion-Ring Interactions Using the Drude Polarizable Empirical Force Field for Proteins. Journal of Computational Chemistry 2020, 41 (5), 439-448.
    64. Khan, H. M.; Grauffel, C.; Broer, R.; MacKerell, A. D.; Havenith, R. W. A.; Reuter, N., Improving the Force Field Description of Tyrosine–Choline Cation−π Interactions: QM Investigation of Phenol–N(Me)4+ Interactions. Journal of Chemical Theory and Computation 2016, 12 (11), 5585-5595.
    65. Turupcu, A.; Tirado-Rives, J.; Jorgensen, W. L., Explicit Representation of Cation−π Interactions in Force Fields with 1/r4 Nonbonded Terms. Journal of Chemical Theory and Computation 2020, 16 (11), 7184-7194.
    66. Wu, J. M.; Wei, S. Y.; Chen, H. L.; Weng, K. Y.; Cheng, H. T.; Cheng, J. W., Solution structure of a novel D-naphthylalanine substituted peptide with potential antibacterial and antifungal activities. Biopolymers 2007, 88 (5), 738-45.
    67. Haug, B. E.; Skar, M. L.; Svendsen, J. S., Bulky aromatic amino acids increase the antibacterial activity of 15-residue bovine lactoferricin derivatives. J Pept Sci 2001, 7 (8), 425-32.
    68. Cheng, K. T.; Wu, C. L.; Yip, B. S.; Chih, Y. H.; Peng, K. L.; Hsu, S. Y.; Yu, H. Y.; Cheng, J. W., The Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and Resistance. Int J Mol Sci 2020, 21 (7).
    69. Davis, M. R.; Dougherty, D. A., Cation-pi interactions: computational analyses of the aromatic box motif and the fluorination strategy for experimental evaluation. Phys Chem Chem Phys 2015, 17 (43), 29262-70.
    70. Dougherty, D. A., The cation-pi interaction. Acc Chem Res 2013, 46 (4), 885-93.
    71. Cheng, J.; Goldstein, R.; Gershenson, A.; Stec, B.; Roberts, M. F., The cation-pi box is a specific phosphatidylcholine membrane targeting motif. J Biol Chem 2013, 288 (21), 14863-73.
    72. Nagarajan, D.; Roy, N.; Kulkarni, O.; Nanajkar, N.; Datey, A.; Ravichandran, S.; Thakur, C.; T, S.; Aprameya, I. V.; Sarma, S. P.; Chakravortty, D.; Chandra, N., Omega76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. Sci Adv 2019, 5 (7), eaax1946.
    73. Tsai, C.-Y.; Salawu, E. O.; Li, H.; Lin, G.-Y.; Kuo, T.-Y.; Voon, L.; Sharma, A.; Hu, K.-D.; Cheng, Y.-Y.; Sahoo, S.; Stuart, L.; Chen, C.-W.; Chang, Y.-Y.; Lu, Y.-L.; Ke, S.; Ortiz, C. L. D.; Fang, B.-S.; Wu, C.-C.; Lan, C.-Y.; Fu, H.-W.; Yang, L.-W., Helical structure motifs made searchable for functional peptide design. Nat Commun 2022, 13 (1), 102.

    QR CODE
    :::