| 研究生: |
蔡睿澤 Ruei-Tze Tsai |
|---|---|
| 論文名稱: |
高密度聚乙烯表面之生物膜藉由銅暴露所引起的抗生素抗性共選擇 Co-selection of antibiotic resistance induced by copper exposure in biofilms grown on HDPE slides |
| 指導教授: | 林居慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 共選擇 、抗生素抗藥性 、生物可利用銅離子 、高密度聚乙烯薄膜 、生物膜 |
| 外文關鍵詞: | Co-selection, Antibiotic resistance, Bioavailable cupric ions, HDPE films, Biofilms |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於塑膠製品非常耐用且價格低廉,很快地成為生活中實用的物品。然而,隨著塑料產量的增加,大量廢棄塑膠開始在自然棲地堆積。一旦塑膠進入環境,風化後產生的凹坑使表面粗糙,疏水性降低,細菌便會在表面定殖並形成生物膜。生物膜中的細菌可以通過水平基因轉移(HGT)來共享和傳播抗生素抗性基因(ARG)。此外,塑膠顆粒上的生物膜對於大多數重金屬的累積相當顯著,例如廣泛用於工業製程和畜牧業的銅離子,因此ARGs在塑膠碎片上生物膜中的傳播可能因共選擇而受到銅的影響。本研究選擇高密度聚乙烯(HDPE)薄膜作為生物膜生成的載體,並在HDPE表面形成生物膜後將HDPE薄膜暴露在含有不同銅離子濃度的緩衝溶液中,最後從HDPE薄膜表面收集生物膜並定量生物膜中的相關基因(包括β-內醯胺類、四環素類、大環內酯類、磺胺類ARGs、銅抗性基因(CRGs)、第1類整合子整合酶基因intI1和16S rRNA基因)和銅濃度,以探究抗性基因的生成程度是否由胞外銅物種組成所調控。結果顯示與對照組相比,低濃度銅、低濃度銅加EDTA、和高濃度銅加EDTA在第2天時pcoA相對豐度增加;與第2天相比,低濃度銅、低濃度銅加EDTA、和高濃度銅加EDTA在第5天的胞內銅濃度降低,說明胞內外生物可利用銅離子的濃度梯度可作為帶有pco操縱子的移動基因元件(MGE)水平基因轉移的驅動力。除此之外,blaCTX-M和pcoA之間的相關性高於其他ARGs和pcoA之間的相關性,基於ARGs和CRGs可同時存在於質粒等MGE,此相關性暗示blaCTX-M的傳播可能受到銅的影響;不僅如此,sul1的傳播也可能因第1類整合子而受到銅的影響,因與對照組相比,低濃度銅在第2天的sul1和intI1相對豐度同時增加。本研究的結果為HDPE生物膜中生物可利用銅離子濃度梯度藉由共選擇驅動抗生素耐藥性,提供了一定程度的證據與見解。
Because plastic products are superbly durable and cheap, they quickly become practical items in life. Yet, massive increases in plastic production have resulted in plenty of waste plastics accumulated in natural habitats. Once the plastic enters the environment, the pits generated after weathering make the surface rough and reduce the hydrophobicity, which enables bacteria to colonize the surface and form biofilms. Bacteria in biofilms can share and spread antibiotic resistance genes (ARGs) through horizontal gene transfer (HGT). In addition, a biofilm on plastic particles can significantly enrich most heavy metals, including copper (Cu) that is widely used in industrial processes and animal husbandry. Hence, the spread of ARGs in biofilms on plastic debris may be affected by Cu through co-selection. In this study high-density polyethylene (HDPE) films were selected for biofilm formation; once biofilms formed on HDPE, HDPE films were exposed to buffer solution containing varying levels of Cu ions; biofilms were then collected from surfaces of HDPE films, and the related genes (including the β-lactam, tetracycline, macrolide, sulfonamide ARGs, Cu resistance genes (CRGs), class 1 integron-integrase gene intI1 and 16S rRNA gene) and Cu concentrations in biofilm were quantified to probe whether the generation of resistance genes would be regulated by extracellular Cu speciation. Results show that compared with controls, pcoA relative abundance on day 2 was increased in LC, LC + EDTA and HC + EDTA. Intracellular Cu concentrations on day 5 were decreased in LC, LC + EDTA and HC + EDTA compared with day 2, indicating concentration gradients of bioavailable Cu ions between intracellular and extracellular regions can be the driving force of HGT related to mobile genetic element (MGE) carrying pco operon. Furthermore, the correlation between blaCTX-M and pcoA was higher than that between other ARGs and pcoA, suggesting the spread of blaCTX-M could be affected by Cu due to co-existing of ARGs and CRGs in MGEs like plasmid. The spread of sul1 also could be affected by Cu through class 1 integron because sul1 and intI1 relative abundance on day 2 were simultaneously increased in LC compared with controls. This study provides preliminary evidence and insights into co-selection of antibiotic resistance driven by concentration gradients of bioavailable Cu ions in HDPE biofilm.
1. Barnes, D.K.A., et al., Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B-Biological Sciences, 2009. 364(1526): p. 1985-1998.
2. Wagner, M., et al., Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 2014. 26.
3. Cole, M., et al., Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 2011. 62(12): p. 2588-2597.
4. Fendall, L.S. and M.A. Sewell, Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 2009. 58(8): p. 1225-1228.
5. Andrady, A.L., Microplastics in the marine environment. Marine Pollution Bulletin, 2011. 62(8): p. 1596-1605.
6. Eriksen, M., et al., Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin, 2013. 77(1-2): p. 177-182.
7. Lima, A.R.A., M.F. Costa, and M. Barletta, Distribution patterns of microplastics within the plankton of a tropical estuary. Environmental Research, 2014. 132: p. 146-155.
8. Obbard, R.W., et al., Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future, 2014. 2(6): p. 315-320.
9. Van Cauwenberghe, L., et al., Microplastic pollution in deep-sea sediments. Environmental Pollution, 2013. 182: p. 495-499.
10. Koelmans, A.A., et al., Plastics in the marine environment. Environ Toxicol Chem, 2014. 33(1): p. 5-10.
11. Yonkos, L.T., et al., Microplastics in Four Estuarine Rivers in the Chesapeake Bay, USA. Environmental Science & Technology, 2014. 48(24): p. 14195-14202.
12. Sadri, S.S. and R.C. Thompson, On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin, 2014. 81(1): p. 55-60.
13. Woodall, L.C., et al., The deep sea is a major sink for microplastic debris. Royal Society Open Science, 2014. 1(4): p. 8.
14. Zalasiewicz, J., et al., The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 2016. 13: p. 4-17.
15. Toyofuku, M., et al., Environmental factors that shape biofilm formation. Bioscience Biotechnology and Biochemistry, 2016. 80(1): p. 7-12.
16. Fulaz, S., et al., Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix. Trends in Microbiology, 2019. 27(11): p. 915-926.
17. Zettler, E.R., T.J. Mincer, and L.A. Amaral-Zettler, Life in the "Plastisphere": Microbial Communities on Plastic Marine Debris. Environmental Science & Technology, 2013. 47(13): p. 7137-7146.
18. Fotopoulou, K.N. and H.K. Karapanagioti, Surface properties of beached plastic pellets. Marine Environmental Research, 2012. 81: p. 70-77.
19. Frost, L.S., et al., Mobile genetic elements: The agents of open source evolution. Nature Reviews Microbiology, 2005. 3(9): p. 722-732.
20. Furuya, E.Y. and F.D. Lowy, Antimicrobial-resistant bacteria in the community setting. Nature Reviews Microbiology, 2006. 4(1): p. 36-45.
21. Stokes, H.W. and M.R. Gillings, Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Fems Microbiology Reviews, 2011. 35(5): p. 790-819.
22. Ricci, J.C.D. and M.E. Hernandez, Plasmid effects on Escherichia coli metabolism. Critical Reviews in Biotechnology, 2000. 20(2): p. 79-108.
23. Subbiah, M., et al., Selection Pressure Required for Long-Term Persistence of bla(CMY-2)-Positive IncA/C Plasmids. Applied and Environmental Microbiology, 2011. 77(13): p. 4486-4493.
24. Molin, S. and T. Tolker-Nielsen, Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 2003. 14(3): p. 255-261.
25. Madsen, J.S., et al., The interconnection between biofilm formation and horizontal gene transfer. Fems Immunology and Medical Microbiology, 2012. 65(2): p. 183-195.
26. Bahl, M.I., L.H. Hansen, and S.J. Sorensen, Impact of conjugal transfer on the stability of IncP-1 plasmid pKJK5 in bacterial populations. Fems Microbiology Letters, 2007. 266(2): p. 250-256.
27. Li, Y.H., et al., Natural genetic transformation of Streptococcus mutans growing in biofilms. Journal of Bacteriology, 2001. 183(3): p. 897-908.
28. Turner, A. and L.A. Holmes, Adsorption of trace metals by microplastic pellets in fresh water. Environmental Chemistry, 2015. 12(5): p. 600-610.
29. Richard, H., et al., Biofilm facilitates metal accumulation onto microplastics in estuarine waters. Science of the Total Environment, 2019. 683: p. 600-608.
30. Ji, X.L., et al., Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. Journal of Hazardous Materials, 2012. 235: p. 178-185.
31. Alonso, A., P. Sanchez, and J.L. Martinez, Environmental selection of antibiotic resistance genes. Environmental Microbiology, 2001. 3(1): p. 1-9.
32. Fraise, A.P., Biocide abuse and antimicrobial resistance - a cause for concern? Journal of Antimicrobial Chemotherapy, 2002. 49(1): p. 11-12.
33. Wang, Q., D.Q. Mao, and Y. Luo, Ionic Liquid Facilitates the Conjugative Transfer of Antibiotic Resistance Genes Mediated by Plasmid RP4. Environmental Science & Technology, 2015. 49(14): p. 8731-8740.
34. Zhou, B.R., et al., Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. Journal of Hazardous Materials, 2016. 320: p. 10-17.
35. Baker-Austin, C., et al., Co-selection of antibiotic and metal resistance. Trends in Microbiology, 2006. 14(4): p. 176-182.
36. Anderson, M.A. and F.M.M. Morel, Growth limitation of a costal diatom by low zinc ion activity. Nature, 1978. 276: p. 70-71.
37. Allen, H.E., R.H. Hall, and T.D. Brisbin, Metal speciation effect on aquatic toxicity. Environmental Science & Technology, 1980. 14: p. 441-443.
38. Campbell, E.A., Interactions between trace metals and aquatic organisms: A critique of the free-ion activity model. In Tessier, A., Turner, D.R. (Eds) Metal Speciation and Bioavailability in Aquatic Sytems. Wiley, 1995.
39. WHO, Antimicrobial Resistance Global Report on Surveillance. 2014.
40. UNEP, Frontiers 2017 Emerging Issues of Environmental Concern. 2017.
41. Lee, S.M., et al., The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochemical and Biophysical Research Communications, 2002. 295(3): p. 616-620.
42. Staehlin, B.M., et al., Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria. Genome Biology and Evolution, 2016. 8(3): p. 811-826.
43. Simoes, M., et al., Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions. Biofouling, 2008. 24(1): p. 35-44.
44. Lin, H.R., et al., A subcellular level study of copper speciation reveals the synergistic mechanism of microbial cells and EPS involved in copper binding in bacterial biofilms. Environmental Pollution, 2020. 263: p. 10.
45. Aguilera, A., et al., Extraction of extracellular polymeric substances from extreme acidic microbial biofilms. Applied Microbiology and Biotechnology, 2008. 78(6): p. 1079-1088.
46. Zhu, Y.G., et al., Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(9): p. 3435-3440.
47. Luo, Y., et al., Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environmental Science & Technology, 2010. 44(19): p. 7220-7225.
48. Hasman, H., et al., Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Applied and Environmental Microbiology, 2006. 72(9): p. 5784-5789.
49. Roosa, S., et al., Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 2014. 189: p. 143-151.
50. Besaury, L., et al., Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Marine Pollution Bulletin, 2013. 67(1-2): p. 16-25.
51. Xiong, W.G., et al., Fate of metal resistance genes in arable soil after manure application in a microcosm study. Ecotoxicology and Environmental Safety, 2015. 113: p. 59-63.
52. Zhang, J.Y., et al., Impacts of addition of natural zeolite or a nitrification inhibitor on antibiotic resistance genes during sludge composting. Water Research, 2016. 91: p. 339-349.
53. Marti, E., J. Jofre, and J.L. Balcazar, Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. Plos One, 2013. 8(10): p. 8.
54. Pei, R.T., et al., Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Research, 2006. 40(12): p. 2427-2435.
55. Aminov, R.I., N. Garrigues-Jeanjean, and R.I. Mackie, Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and Environmental Microbiology, 2001. 67(1): p. 22-32.
56. Alexander, J., et al., Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Science of the Total Environment, 2015. 512: p. 316-325.
57. Sandbakken, E.T., et al., Highly variable effect of sonication to dislodge biofilm-embedded Staphylococcus epidermidis directly quantified by epifluorescence microscopy: an in vitro model study. Journal of Orthopaedic Surgery and Research, 2020. 15(1): p. 9.
58. Kim, L.H., et al., Physicochemical Interactions between Rhamnolipids and Pseudomonas aeruginosa Biofilm Layers. Environmental Science & Technology, 2015. 49(6): p. 3718-3726.
59. Woodcock, S. and W.T. Sloan, Biofilm community succession: a neutral perspective. Microbiology-Sgm, 2017. 163(5): p. 664-668.
60. Xue, Z., et al., Multiple Roles of Extracellular Polymeric Substances on Resistance of Biofilm and Detached Clusters. Environmental Science & Technology, 2012. 46(24): p. 13212-13219.
61. Koechler, S., et al., Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Research in Microbiology, 2015. 166(10): p. 764-773.
62. Franke, S., et al., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. Journal of Bacteriology, 2003. 185(13): p. 3804-3812.
63. Huffman, D.L., et al., Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry, 2002. 41(31): p. 10046-10055.
64. Zhang, S.Y., et al., Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Standards in Genomic Sciences, 2015. 10: p. 10.
65. Tetaz, T.J. and R.K.J. Luke, Plasmid-Controlled Resistance to Copper in Escherichia coli. Journal of Bacteriology, 1983. 154: p. 1263-1268.
66. Monchy, S., et al., Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology-Sgm, 2006. 152: p. 1765-1776.
67. Monchy, S., et al., Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. Journal of Bacteriology, 2007. 189(20): p. 7417-7425.
68. Wang, Y., et al., Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics. Chemical Engineering Journal, 2020. 392: p. 14.
69. Satroutdinov, A.D., et al., Degradation of metal-EDTA complexes by resting cells of the bacterial strain DSM 9103. Environmental Science & Technology, 2000. 34(9): p. 1715-1720.
70. Flemming, H.C., et al., Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 2016. 14(9): p. 563-575.
71. Fox, R.E., et al., Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. Isme Journal, 2008. 2(10): p. 1024-1039.
72. Stalder, T. and E. Top, Plasmid transfer in biofilms: a perspective on limitations and opportunities. Npj Biofilms and Microbiomes, 2016. 2: p. 5.
73. Balcazar, J.L., J. Subirats, and C.M. Borrego, The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology, 2015. 6: p. 9.
74. Zhang, W., et al., Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environmental Science & Technology, 2009. 43(20): p. 7643-7650.
75. Engemann, C.A., et al., Fate of tetracycline resistance genes in aquatic systems: Migration from the water column to peripheral biofilms. Environmental Science & Technology, 2008. 42(14): p. 5131-5136.
76. Eckert, E.M., et al., Microplastics increase impact of treated wastewater on freshwater microbial community. Environmental Pollution, 2018. 234: p. 495-502.
77. Arias-Andres, M., et al., Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 2018. 237: p. 253-261.
78. Fang, L.X., et al., Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Scientific Reports, 2016. 6: p. 8.
79. Gillings, M.R., et al., Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. Isme Journal, 2015. 9(6): p. 1269-1279.
80. Li, B., et al., Real-Time Study of Rapid Spread of Antibiotic Resistance Plasmid in Biofilm Using Microfluidics. Environmental Science & Technology, 2018. 52(19): p. 11132-11141.
81. Roberto, A.A., et al., Distribution and co-occurrence of antibiotic and metal resistance genes in biofilms of an anthropogenically impacted stream. Science of the Total Environment, 2019. 688: p. 437-449.
82. Zhang, Q., et al., A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 2020. 54(7): p. 3740-3751.
83. Yan, Z.H., et al., Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environmental Science & Technology, 2022. 56(1): p. 414-421.
84. Vetrovsky, T. and P. Baldrian, The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. Plos One, 2013. 8(2): p. 10.
85. Teal, T.K., et al., Spatiometabolic stratification of Shewanella oneidensis biofilms. Applied and Environmental Microbiology, 2006. 72(11): p. 7324-7330.
86. Ekstrom, E.B., F.M.M. Morel, and J.M. Benoit, Mercury methylation independent of the acetyl-coenzyme a pathway in sulfate-reducing bacteria. Applied and Environmental Microbiology, 2003. 69(9): p. 5414-5422.