| 研究生: |
趙清煌 Qing-huang Zhao |
|---|---|
| 論文名稱: |
碳化鎢合金圓棒之電化學加工參數分析 The Parametric Analysis in Fabrication of Tungsten Carbide Alloy Rod by Electrochemical Machining |
| 指導教授: |
洪勵吾
Lih-wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電化學加工 、碳化鎢合金 、微電極 、複合電解液 |
| 外文關鍵詞: | Electrochemical machining, Tungsten carbide alloy, Micro electrode, Hybrid electrolyte |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電化學加工,屬於非傳統加工方法的一種,以電解現象達成加工成形之目的,其優點為加工不受材料硬度限制、刀具不易耗損、工件表面無應力殘留、工件表面粗糙度佳。其機台設備構造相對簡單,造價較低,加工速度快,複雜外形的工件也能輕易加工。
碳化鎢(Tungsten Carbide)合金為高硬度合金,常用於製作切削刀具及模具,然而,若使用常見的硝酸鈉(NaNO3)為做為電解液進行電化學加工,卻會產生鈍化層(passivation layer),使陽極的材料移除率大幅降低。本研究之目的在於,使用氨水(NH4OH)與硝酸鈉之複合溶液,做為電解液進行加工,探討操作電壓、硝酸鈉溶液濃度、氨水溶液濃度、陽極工件圓棒轉速、加工時間以上五者對材料移除率與工件外形之影響。
實驗結果顯示,在加工電壓20 V、氨水溶液濃度4 M、陽極工件圓棒轉速3000 rpm的條件之下,若硝酸鈉濃度為2 M或4 M,將有最大的材料移除率。此時,若硝酸鈉濃度為2 M,陽極工件圓棒外形為正錐狀;若硝酸鈉濃度為4 M,陽極工件圓棒外形為倒錐狀,且表面具有塊狀不平整。加工後工件表面抛光度會微幅下降,但不會消失。陽極工件圓棒轉速為3000 rpm時,與靜止或低轉速相比,具有較大的材料移除率與較接近圓柱之外形。加工時間只能控制材料移除量,無法修正工件外形。
Electrochemical machining (ECM) is one of the non-traditional manufacturing process, shaping workpiece by electrolysis. The advantages are that the process is independent of material properties, little or no tool wearing, no surface stress, and good surface finishing. The machining equipment is relatively simple and inexpensive with fast processing speed, and capable of complex workpiece geometry.
Tungsten carbide (WC) alloy has high stiffness and high surface hardness, commonly used in cutting tools and mold. But in ECM, passivation layer will be generated in sodium nitrate (NaNO3) electrolyte, and significantly reduce the material removal rate (MRR) in anode. The object of this study was to take sodium nitrate and ammonia hydroxide (NH4OH) as hybrid electrolyte in ECM process, and investigate the effects of various processing parameters (e.g. applied voltage, NaNO3 concentration, NH4OH concentration, electrode rotation speed, and machining time) on MRR and electrode shape.
The results show that, with condition of 20 V, 4 M NH4OH and 3000 rpm, there will be largest MRR. Meanwhile, the shape of electrode will be tapered if NaNO3 is 2 M, and reversely tapered with uneven surface if NaNO3 is 4 M. Surface quality will slightly degrade after machining. Machining time can control MRR rather than electrode shape.
1.徐泰然、朱銘祥(2003)微機電系統與微系統:設計與製造。台北市:麥格羅希爾出版。
2.Ahn, S. H., Ryu, S. H., Choi, D. K., & Chu, C. N. (2004). Electro-chemical micro drilling using ultra short pulses. Precision Engineering, 28(2), 129-134.
3.御子柴佑恭. (1967). 超硬合金の電解加工法. 日立評論, 49(3), 319-324.
4.Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions, (2nd ed). Houston, United States: National Association of Corrosion Engineers.
5.Hochstrasser, S., Mueller, Y., Latkoczy, C., Virtanen, S., & Schmutz, P. (2007). Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy. Corrosion Science, 49(4), 2002-2020.
6.Schubert, N., Schneider, M., & Michealis, A. (2013). The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density. Electrochimica Acta, 113, 748-754.
7.Schubert, N., Schneider, M., & Michaelis, A. (2014). Electrochemical machining of cemented carbides. International Journal of Refractory Metals and Hard Materials, 47, 54-60.
8.菅沼栄一. (1971). 超合金の電解における基礎的挙動について II. 山形大学紀要. 工学, 11(2), 197-204.
9.菅沼栄一. (1978). 超硬合金の電解加工に関する基礎的研究 (第 1 報). 精密機械, 44(520), 502-507.
10.菅沼栄一. (1978). 超硬合金の電解加工に関する基礎的研究 (第 2 報). 精密機械, 44(524), 926-931.
11.菅沼栄一. (1978). 超硬合金の電解加工に関する基礎的研究 (第 3 報). 精密機械, 44(527), 1373-1379.
12.菅沼栄一. (1980). 超硬合金の電解加工における電解生成物の生成過程と陰極電解による除去作用. 電気加工学会誌, 13(26), 3-20.
13.Human, A. M., & Exner, H. E. (1996). Electrochemical behaviour of tungsten-carbide hardmetals. Materials Science and Engineering: A, 209(1), 180-191.
14.Choi, S. H., Ryu, S. H., Choi, D. K., & Chu, C. N. (2007). Fabrication of WC micro-shaft by using electrochemical etching. The International Journal of Advanced Manufacturing Technology, 31(7-8), 682-687.
15.Shibuya, N., Ito, Y., & Natsu, W. (2012). Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution. International Journal of Precision Engineering and Manufacturing, 13(11), 2075-2078.
16.Mizugai, K., Shibuya, N., & Kunieda, M. (2012, October). Study on electrolyte jet machining of cemented carbide. In Proceedings of the 37th International MATADOR Conference (pp. 83). Springer Science & Business Media.
17.Choi, S. H., Kim, B. H., Shin, H. S., & Chu, C. N. (2013). Analysis of the electrochemical behaviors of WC–Co alloy for micro ECM. Journal of Materials Processing Technology, 213(4), 621-630.
18.Natsu, W., & Kurahata, D. (2013). Influence of ECM pulse conditions on WC alloy micro-pin fabrication. Procedia CIRP, 6, 401-406.
19.Hackert-Oschätzchen, M., Martin, A., Meichsner, G., Zinecker, M., & Schubert, A. (2013). Microstructuring of carbide metals applying jet electrochemical machining. Precision Engineering, 37(3), 621-634.
20.田福助(2011)。電化學: 原理與應用(頁1-208)。新北市:高立圖書。
21.Datta, M., & Landolt, D. (2000). Fundamental aspects and applications of electrochemical microfabrication. Electrochimica Acta, 45(15), 2535-2558.
22.Thorpe, J. F., & Zerkle, R. D. (1971). Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining. Electrochemical Society, Princeton, 1-39.
23.吳浩青、李永舫(2001)。電化學動力學(頁45-46)。台北市:科技圖書。
24.胡啟章(2002)。電化學原理與方法(頁38-40)。台北市:五南圖書。
25.Rosenkranz, C., Lohrengel, M. M., & Schultze, J. W. (2005). The surface structure during pulsed ECM of iron in NaNO3. Electrochimica Acta, 50(10), 2009-2016.
26.Basak, I., & Ghosh, A. (1997). Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification. Journal of Materials Processing Technology, 71(3), 350-359.
27.張馨予(2011)。利用電化學函工製作螺旋型微電極之參數分析(國立中央大學機械系碩士論文)。取自http://ir.lib.ncu.edu.tw/handle/987654321/47618
28.朱樹敏(2006)。電化學加工技術(頁39-45)。北京:化學工業出版社。
29.范智文(2010)。利用電化學加工製作微電極和微孔之研究與分析(國立中央大學機械系博士論文)。取自http://ir.lib.ncu.edu.tw/handle/987654321/43479
30.Kellner, F. J. J., Hildebrand, H., & Virtanen, S. (2009). Effect of WC grain size on the corrosion behavior of WC–Co based hardmetals in alkaline solutions. International Journal of Refractory Metals and Hard Materials, 27(4), 806-812.
31.陳裕豐(1999)。高潔淨閥件之流道表面處理-電解拋光 (EP) 技術。機械工業雜誌,198,230-240。
32.Lim, Y. M., & Kim, S. H. (2001). An electrochemical fabrication method for extremely thin cylindrical micropin. International Journal of Machine Tools and Manufacture, 41(15), 2287-2296.
33.Lim, Y. M., Lim, H. J., Liu, J. R., & Kim, S. H. (2003). Fabrication of cylindrical micropins with various diameters using DC current density control. Journal of Materials Processing Technology, 141(2), 251-255.