| 研究生: |
游韋翔 Wei-Hsiang YU |
|---|---|
| 論文名稱: | Unreplicated Designs for Random Noise Exploration |
| 指導教授: |
張明中
Ming-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 純誤差 、高斯過程 、質量改善 、色散效應 |
| 外文關鍵詞: | Pure error, Gaussian process, Quality improvement, Dispersion effects |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在工業系統當中,了解系統變異非常重要。雖然不同的處理組合提供了反應曲面波動的訊息,但當系統較為複雜時,不同的處理組合將難以萃取真實系統變異的資訊。一種常見的解決方式為執行重複實驗點,然而重複實驗點卻無法提供反應曲面波動的訊息,而且經常被視為增加成本的一種做法。在本篇論文我們推導出一個期望損失準則,並藉由此準則來建立沒有重複實驗點卻包含系統變異資訊的實驗設計,同時這些設計點也提供反應曲面波動的資訊。
Grasping the variation of system plays a crucial role in industrial systems. Different treatment combinations provide the information about the fluctuation of response surfaces. However, they are unable to extract the exact information of pure errors if the model is complex. Conducting replicates is one solution. On the other hand, replication does not provide information about response surfaces and is usually treated as a waste. In this thesis, we derive an expected loss criterion and aim at constructing unreplicated designs containing as much information of pure error as possible. These points are capable of exploring the response surface as well.
References
[1] Box, G. E. P. and Meyer, R. D. (1986). Dispersion effects from fractional factorial designs.
Technometrics, 28, 19-27.
[2] Wang, P.C. (1989). Tests for dispersion effects from orthogonal arrays. Comput. Statist. Data Anal,
8, 109-117.
[3] Bergman, B. and Hynen, A. (1997). Dispersion effects from unreplicated designs in the 2^k-p series. Technometrics, 39, 191-198.
[4] Liao, C. T. (2000). Identication of dispersion effects from unreplicated 2^n-k fractional factorial
designs. Comput. Statist. Data Anal, 33, 291-289.
[5] Brenneman, W. A. and Nair, V. N. (2001). Methods for identifying dispersion effects in unreplicated factorial experiments: A critical analysis and proposed strategies. Technometrics, 43,
388-405.
[6] McGrath, R. N. and Lin, D. K. J. (2001a). Testing multiple dispersion effects in unreplicated
fractional factorial designs. Technometrics, 43, 406-414.
[7] Tsai, S. F., Liao, C. T., and Chai, F. S. (2012). D-optimal partially replicated two-level factorial
designs. Statist. Sinica, 22, 419-432.
[8] Tsai, S. F., Liao, C. T., and Chai, F. S. (2015). Identication of dispersion effects from partially
replicated two-level factorial designs. J. Quality Tech, 47, 43-53.
[9] Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Effcient global versus local search in
constrained optimization of computer models. Lecture Notes-Monograph Series, 11-25.
[10] Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Effcient global optimization of expensive black-box functions. J. Global Optim, 13, 455-492.
[11] Ranjan, P., Bingham, D., and Michailidis, G. (2008). Sequential experiment design for contour
estimation from complex computer codes. Technometrics, 50(4), 527{541.
[12] Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and Datasets. Retrieved July 6, 2020, from http://www.sfu.ca/ ssurjano.