| 研究生: |
李柏翰 Po-Han Li |
|---|---|
| 論文名稱: |
建構駐波聲場光生物反應器系統用於提升密閉式微藻養殖效能之研究 Development of Development of Development ofDevelopment ofDevelopment ofDevelopment of Development ofDevelopment of Ultrasound Standing Wave Field ltrasound Standing Wave Fieldltrasound Standing Wave Field ltrasound Standing Wave Field ltrasound Standing Wave Fieldltrasound Standing Wave Fieldltrasound Standing Wave Fieldltrasound Standing Wave Fieldltrasound Standing Wave Field ltrasound Standing Wave Field -Incorporated Incorporated Incorporated Incorporated Incorporated Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Photobioreactor System to Enhance Efficiency of Efficiency of Efficiency of Microalgal Microalgal Microalgal Microalgal Microalgal Microalgal Microalgal Microalgal Cultivation in Closed Setting Cultivation in Closed Setting Cultivation in Closed Setting Cultivation in Closed Setting Cultivation in Closed Setting |
| 指導教授: |
李宇翔
Yu-Hsiang Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 擬球藻 、光生物反應器 、超生波駐波場 、生物質 、生物脂質 、二十碳五烯酸 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微藻富含許多的有益成分,例如:特用化學品、多元不飽和脂肪酸、維生素及多醣體等,因此奠定了微藻在各個領域的應用價值。台灣因為缺乏廣闊的半封閉海灣地形,加上颱風、光照等氣候變化因素,因此並不適合開發大面積的海藻培育場。而受到成本效益的考量,大部分都選擇小型開放式的陽光池培養模式,但其缺點為培養環境易受外來物種的污染而影響產物品質。因此,以穩定的小規模/實驗室環境(即光生物反應器)進行養殖,將可落實產品質與量的品管控制以提升產業發展。然而,在密閉空間下養殖往往因為養分不足或是培養基置換不易而導致產量不足的問題,由此本研究提出建構一駐波聲場光生物反應器系統(Ultrasound Standing Wave Field-Incorporated Photobioreactor System;U-PBRS),於密閉系統下得以半自動化的方式更換培養基,以持續提供微藻生長足夠的營養,藉此提高單位體積內微藻的生物質和生物脂質產量,而因此提升整體養殖之效能。本研究選用擬球藻作為實驗標的微藻細胞。由於擬球藻富含二十碳五烯酸(Eicosapentaenoic acid;EPA),使的該藻種在具有極高的經濟價值。本實驗所設定的最佳超聲波駐波場(Ultrasound Standing Wave Field;USWF)參數為1 MHz 的頻率;8 W/cm2的輸出能量;系統流率為2 mL/min,於培養總體積30 mL,操作時間2小時下,細胞總收集率可高達90 %。此外,為了評估此參數下對於細胞是否有毒性或傷害性,經實驗結果顯示,擬球藻細胞的生長及生理並沒有差異(P = NS)。於此為基礎,我們進一步的以建構的U-PBRS來進行微藻培養,每三天置換培養基,十二天後我們發現置換培養基的組別(實驗組),相較於不置換培養基(對照組)的組別細胞濃度提高了1.4倍;生長質量增加了2.6倍;生物脂質增加了2倍,而EPA的產也增加了2倍。綜合以上結果,以本研究所建構的U-PBRS有效地提升了密閉式微藻養殖的效能。
Microalgae have long been recognized as one of the most economical bio-resources for live feed, pharmaceuticals, and alternative fuels since they can provide abundance of essential chemicals such as proteins and polysaccharides. Due to lack of a broad semi-enclosed bay topography and concerns of typhoon and climate-related issues, it is not suitable for Taiwan to build up an open, large-area pool for massive microalgal cultivation. Therefore, the methods using various small-scale open pools are usually conducted nowadays. However, such open environment is prone to be contaminated by exogenous species and thereby the quality of the cells is affected. Photobiorectors, in which the culture environment can be precisely controlled, provide an alternative for microalgal growth without aforementioned drawbacks. However, limited amount of nutrient and/or cumbersome procedures for culture medium change greatly hinder the productivity of photobioreactor-based microalgal culture. To overcome these challenges, we proposed to establish an Ultrasound Standing Wave Field (USWF)-Incorporated Photobioreactor System; U-PBRS, which enables to semi-automatically change medium and persistently maintain the nutrient-enriched environment for microalgal cultivation throughout the culture process to enhance the culture efficiency. In this study, the Nannochloropsis oculata (N. oculata), which is enriched with eicosapentaenoic acid (EPA), was selected as the experimental microalga cells. The optimized USWF was set at 1 MHz of frequency, 8 W/cm2 of output energy; and flow rate of 2 mL min by which the cell collection rate can be obtained by up to 90% under 2 h of operation for total volume of 30 mL, and such USWF setting was ineffective to cells no matter in cellular growth and/or in lipid production (P = NS for each). In terms of the productions of N. oculata cultured by U-PBRS for 12 days in which the medium was changed every 3 days, our data showed that the yielded cell concentration, biomass, biolipid and EPA significantly enhanced 1.4, 2.6, 2, and 2 folds, respectively, as compared to the group without medium change. Overall the U-PBRS developed in this study effectively promoted the efficiency of microalgal culture operation in closed setting and thereby exhibited a high potential for use in massive microalgal cultivation.
[1] Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list: a review of the technological challenges. Journal of the Royal Society, Interface / the Royal Society. 2010;7:703-26.
[2] Su HM, Su MS, Liao IC. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiologia. 1997;358:301-4.
[3] Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International. 2007;15:1-9.
[4] Coutteau P, Sorgeloos P. The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research. 1992;11:467-.
[5] Kim S-K, Kang K-H. Medicinal effects of peptides from marine microalgae. Advances in food and nutrition research. 2011;64:313-23.
[6] Poisson L, Ergan F. Docosahexaenoic acid ethyl esters from Isochrysis galbana. Journal of biotechnology. 2001;91:75-81.
[7] Liao W, Huang R, Su H-M. Hemagglutinating activity from marine microalgae. NOVA HEDWIGIA BEIHEFT. 2001;122:99-106.
[8] Yun YS, Lee SB, Park JM, Lee CI, Yang JW. Carbon dioxide fixation by algal cultivation using wastewater nutrients. Journal of Chemical Technology and Biotechnology. 1997;69:451-5.
[9] Yoshihara K-I, Nagase H, Eguchi K, Hirata K, Miyamoto K. Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor. Journal of fermentation and bioengineering. 1996;82:351-4.
[10] Chisti Y. Biodiesel from microalgae. Biotechnology advances. 2007;25:294-306.
[11] Nakaya N, Homma Y, Goto Y. Cholesterol lowering effect of spirulina. Nutrition Reports International. 1988.
[12] Tanaka K, Konishi F, Himeno K, Taniguchi K, Nomoto K. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunology Immunotherapy. 1984;17:90-4.
[13] Gustafson KR, Cardellina JH, Fuller RW, Weislow OS, Kiser RF, Snader KM, et al. AIDS-antiviral sulfolipids from cyanobacteria (blue-green algae). Journal of the National Cancer Institute. 1989;81:1254-8.
[14] Yongmanitchai W, Ward OP. Screening of algae for potential alternative sources of eicosapentaenoic acid. Phytochemistry. 1991;30:2963-7.
[15] van den Elsen L, Garssen J, Willemsen L. Long chain N-3 polyunsaturated fatty acids in the prevention of allergic and cardiovascular disease. Current pharmaceutical design. 2012;18:2375-92.
[16] Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis: effects of eicosapentaenoic acid in clinical trials in depression. The Journal of clinical psychiatry. 2011;72:1577.
[17] Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n− 3 fatty acids for the prevention of cancer: a review of potential mechanisms. The American journal of clinical nutrition. 2004;79:935-45.
[18] Harvey PH, Pagel MD. The comparative method in evolutionary biology: Oxford university press Oxford; 1991.
[19] Becker EW. Microalgae: biotechnology and microbiology: Cambridge University Press; 1994.
[20] Chisti Y. Biodiesel from microalgae. Biotechnology advances. 2007;25:294-306.
[21] Sobczuk TM, Camacho FG, Rubio FC, Fernández F, Grima EM. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and bioengineering. 2000;67:465-75.
[22] Ward JK, Strain BR. Elevated CO2 studies: past, present and future. Tree physiology. 1999;19:211-20.
[23] Ruiz-Martinez A, Garcia NM, Romero I, Seco A, Ferrer J. Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresource technology. 2012;126:247-53.
[24] Rados S, Vaclav B, Frantisek D. CO2 balance in industrial cultivation of algae. Arch Hydrobiol. 1975;46:297-310.
[25] Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology. 2009;100:833-8.
[26] Ono E, Cuello JL. Selection of optimal microalgae species for CO2 sequestration. proceedings of the 2nd annual conference on carbon sequestration, alexandria: Citeseer; 2003. p. 1-7.
[27] Hoshida H, Ohira T, Minematsu A, Akada R, Nishizawa Y. Accumulation of eicosapentaenoic acid in Nannochloropsis sp. in response to elevated CO2 concentrations. Journal of Applied Phycology. 2005;17:29-34.
[28] Tang D, Han W, Li P, Miao X, Zhong J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol. 2011;102:3071-6.
[29] Seckbach J, Gross H, Nathan M. Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel J Bot. 1971.
[30] Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I. Tolerance of microalgae to high CO 2 and high temperature. Phytochemistry. 1992;31:3345-8.
[31] Kodama M, Ikemoto H, Miyachi S. A new species of highly CO sub (2)-tolerant fast-growing marine microalga suitable for high-density culture. Journal of marine biotechnology. 1993;1:21-5.
[32] Miyairi S. CO 2 assimilation in a thermophilic cyanobacterium. Energy conversion and management. 1995;36:763-6.
[33] Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Honami N, et al. Growth of photosynthetic algae Euglena in high CO2 conditions and its photosynthetic characteristics. International Symposium on Plant Production in Closed Ecosystems 4401996. p. 49-54.
[34] Nagase H, Eguchi K, Yoshihara K-I, Hirata K, Miyamoto K. Improvement of microalgal NOx removal in bubble column and airlift reactors. Journal of fermentation and bioengineering. 1998;86:421-3.
[35] Miura Y, Yamada W, Hirata K, Miyamoto K, Kiyohara M. Stimulation of hydrogen production in algal cells grown under high CO2 concentration and low temperature. Applied biochemistry and biotechnology. 1993;39:753-61.
[36] Matsumoto H, Shioji N, Hamasaki A, Ikuta Y. Basic study on optimization of raceway-type algal cultivator. Journal of chemical engineering of Japan. 1996;29:541-3.
[37] Miron AS, Gomez AC, Camacho FG, Grima EM, Chisti Y. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. Journal of Biotechnology. 1999;70:249-70.
[38] Weissman JC, Goebel RP, Benemann JR. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnology and bioengineering. 1988;31:336-44.
[39] Mouget J-L, Dakhama A, Lavoie MC, de la Noüe J. Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiology Ecology. 1995;18:35-43.
[40] Tredici M, Chini Zittelli G, Biagiolini S, Materassi R. Novel photobioreactors for the mass cultivation of Spirulina spp. Bulletin de l'Institut océanographique. 1993:89-96.
[41] Richmond A, Becker E. Technological aspects of mass cultivation-a general outline. CRC handbook of microalgal mass culture. 1986:245-63.
[42] Aiba S. Growth kinetics of photosynthetic microorganisms. Microbial reactions: Springer; 1982. p. 85-156.
[43] Behrens P. Photobioreactors and fermentors: the light and dark sides of growing algae. Algal culturing techniques. 2005:189-204.
[44] Carvalho AP, Meireles LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnology progress. 2006;22:1490-506.
[45] Barbosa MJ, Wijffels RH. Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnology and bioengineering. 2004;85:78-85.
[46] Camacho FGa, Gomez AC, Sobczuk TM, Grima EM. Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochemistry. 2000;35:1045-50.
[47] Barbosa MJ, Albrecht M, Wijffels RH. Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnology and bioengineering. 2003;83:112-20.
[48] Jiménez C, Cossı́ BR, Niell FX. Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture. 2003;221:331-45.
[49] Richmond A. Handbook of microalgal culture: biotechnology and applied phycology: John Wiley & Sons; 2008.
[50] Turpin DH. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology. 1991;27:14-20.
[51] Ratledge C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie. 2004;86:807-15.
[52] Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification. 2009;48:1146-51.
[53] Endo T, Schreiber U, Asada K. Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant and cell physiology. 1995;36:1253-8.
[54] Renaud S, Parry D. Microalgae for use in tropical aquaculture II: Effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. Journal of applied Phycology. 1994;6:347-56.
[55] Cifuentes AS, González MA, Inostroza I, Aguilera A. Reappraisal of physiological attributes of nine strains of Dunaliella (Chlorophyceae): growth and pigment content across a salinity gradient. Journal of Phycology. 2001;37:334-44.
[56] Kaewkannetra P, Enmak P, Chiu T. The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering. 2012;17:591-7.
[57] Shah SMU, Che Radziah C, Ibrahim S, Latiff F, Othman MF, Abdullah MA. Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Annals of Microbiology. 2013;64:157-64.
[58] Ben‐Amotz A, Tornabene TG, Thomas WH. CHEMICAL PROFILE OF SELECTED SPECIES OF MICROALGAE WITH EMPHASIS ON LIPIDS1. Journal of Phycology. 1985;21:72-81.
[59] Ho S-H, Nakanishi A, Ye X, Chang J-S, Hara K, Hasunuma T, et al. Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy. Biotechnol Biofuels. 2014;7:97.
[60] Jiang Y, Chen F. Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochemistry. 2000;35:1205-9.
[61] Rubio FC, Fernandez F, Perez J, Camacho FG, Grima EM. Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering. 1999;62:71-86.
[62] Hirooka S, Higuchi S, Uzuka A, Nozaki H, Miyagishima SY. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH. PloS one. 2014;9:e107702.
[63] Santos AM, Janssen M, Lamers PP, Evers WA, Wijffels RH. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions. Bioresour Technol. 2012;104:593-9.
[64] Kim J, Cho K-J, Han G, Lee C, Hwang S. Effects of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic conditions. water research. 2013;47:251-8.
[65] Di Martino Rigano V, Vona V, Lobosco O, Carillo P, Lunn JE, Carfagna S, et al. Temperature dependence of nitrate reductase in the psychrophilic unicellular alga Koliella antarctica and the mesophilic alga Chlorella sorokiniana. Plant, Cell and Environment. 2006;29:1400-9.
[66] Robinson JL, Pyzyna B, Atrasz RG, Henderson CA, Morrill KL, Burd AM, et al. Growth kinetics of extremely halophilic Archaea (family Halobacteriaceae) as revealed by Arrhenius plots. Journal of bacteriology. 2005;187:923-9.
[67] Renaud SM, Thinh L-V, Lambrinidis G, Parry DL. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture. 2002;211:195-214.
[68] O P. Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology. 2001;57:287-93.
[69] Richmond A. Handbook of microalgal mass culture: CRC press Boca Raton, FL; 1986.
[70] Zhang Z, Sachs JP. Hydrogen isotope fractionation in freshwater algae: I. Variations among lipids and species. Organic Geochemistry. 2007;38:582-608.
[71] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal. 2008;54:621-39.
[72] Wang B, Lan CQ, Horsman M. Closed photobioreactors for production of microalgal biomasses. Biotechnology advances. 2012;30:904-12.
[73] Chen C-Y, Liu C-H, Lo Y-C, Chang J-S. Perspectives on cultivation strategies and photobioreactor designs for photo-fermentative hydrogen production. Bioresource technology. 2011;102:8484-92.
[74] Rorrer G, Mullikin R. Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures. Chemical Engineering Science. 1999;54:3153-62.
[75] Watanabe Y, Saiki H. Development of a photobioreactor incorporating Chlorella sp. for removal of CO 2 in stack gas. Energy conversion and Management. 1997;38:S499-S503.
[76] Ugwu C, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresource technology. 2008;99:4021-8.
[77] Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol. 2012;110:496-502.
[78] Edzwald J. Algae, bubbles, coagulants, and dissolved air flotation. Water Science & Technology. 1993;27:67-81.
[79] Grima EM, Belarbi E-H, Fernández FA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology advances. 2003;20:491-515.
[80] Tenney MW, Echelberger Jr WF, Coffey JJ, McAloon TJ. Chemical conditioning of biological sludges for vacuum filtration. Journal (Water Pollution Control Federation). 1970:R1-R20.
[81] Mota M, Teixeira JA, Yelshin A. Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Separation and purification technology. 2002;27:137-44.
[82] Divakaran R, Pillai VS. Flocculation of algae using chitosan. Journal of Applied Phycology. 2002;14:419-22.
[83] Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. Journal of renewable and sustainable energy. 2010;2:012701.
[84] Manbachi A, Cobbold RS. Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound. 2011;19:187-96.
[85] Shirane G, Sawaguchi E, Takagi Y. Dielectric properties of lead zirconate. Physical Review. 1951;84:476.
[86] Huang O, Bandyopadhyay A, Bose S. Influence of processing parameters on PZT thick films. Materials Science and Engineering: B. 2005;116:19-24.
[87] Li T, Zawadzki PA, Stall RA, Kroll WJ. Ferroelectric PbZr1-xTixO3 thin films made by various metalorganic chemical vapor deposition techniques. Photonics West'97: International Society for Optics and Photonics; 1997. p. 359-64.
[88] Pandey S, James A, Prakash C, Goel T, Zimik K. Electrical properties of PZT thin films grown by sol–gel and PLD using a seed layer. Materials Science and Engineering: B. 2004;112:96-100.
[89] Tsuchiya K, Kitagawa T, Nakamachi E. Study for piezoelectric characterization of PZT actuators deposited by RF magnetron sputtering for MEMS. SPIE's International Symposium on Smart Materials, Nano-, and Micro-Smart Systems: International Society for Optics and Photonics; 2002. p. 225-33.
[90] Hawkes JJ, Limaye M, Coakley WT. Filtration of bacteria and yeast by ultrasound‐enhanced sedimentation. Journal of applied microbiology. 1997;82:39-47.
[91] Grundy MA, Bolek WE, Coakley WT, Benes E. Rapid agglutination testing in an ultrasonic standing wave. Journal of immunological methods. 1993;165:47-57.
[92] Petersson F, Nilsson A, Holm C, Jönsson H, Laurell T. Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab on a Chip. 2005;5:20-2.
[93] Yasuda K, Umemura S-i, Takeda K. Concentration and fractionation of small particles in liquid by ultrasound. Japanese journal of applied physics. 1995;34:2715.
[94] Yasuda K, Umemura Si, Takeda K. Particle separation using acoustic radiation force and elecrostatic force. The Journal of the Acoustical Society of America. 1996;99:1965-70.
[95] Dayton P, Klibanov A, Brandenburger G, Ferrara K. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound in medicine & biology. 1999;25:1195-201.
[96] Kobayashi D, Hayashida Y, Sano K, Terasaka K. Agglomeration and rapid ascent of microbubbles by ultrasonic irradiation. Ultrason Sonochem. 2011;18:1193-6.
[97] Coakley WT, Bardsley DW, Grundy MA, Zamani F, Clarke DJ. Cell manipulation in ultrasonic standing wave fields. Journal of Chemical Technology and Biotechnology. 1989;44:43-62.
[98] Limaye M, Hawkes JJ, Coakley WT. Ultrasonic standing wave removal of microorganisms from suspension in small batch systems. Journal of microbiological methods. 1996;27:211-20.
[99] Jones J, Manning S, Montoya M, Keller K, Poenie M. Extraction of algal lipids and their analysis by HPLC and mass spectrometry. Journal of the American Oil Chemists' Society. 2012;89:1371-81.
[100] Cartens M, Grima EM, Medina AR, Giménez AG, González JI. Eicosapentaenoic acid (20∶ 5n-3) from the marine microalgaPhaeodactylum tricornutum. Journal of the American Oil Chemists’ Society. 1996;73:1025-31.