| 研究生: |
沈仲維 Chung-Wei Shen |
|---|---|
| 論文名稱: |
強韌概似函數更廣泛之應用 More on the Applicability of the Robust Likelihood Methodology |
| 指導教授: |
鄒宗山
Tsung-Shan Tsou |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 部份線性模型 、廣義線性模型 、強韌概似函數 、相關性的有序資料 |
| 外文關鍵詞: | Partially linear models, Generalized Linear models, Robust likelihood function, Correlated ordinal data |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先介紹Royall與Tsou在2003年所提出之強韌概似函數的方法。其次,將其方法與觀念,應用於分析相關性的有序(ordinal)資料並於資料平均數在廣義線性模型的架構下,推導大樣本時,有興趣之迴歸參數的強韌概似函數。最後,將平均數由廣義線性模型進ㄧ步推廣到部分線性模型的架構且同樣推導大樣本時,有興趣之迴歸參數的強韌概似函數。
值得注意的是這些概似函數並不需要知道資料的真實分配,只需要假設二階或四階動差存在即可。最後,利用模擬與真實資料的分析來呈現此強韌方法的效率。
In this thesis, we first introduce the idea of robust likelihood functions proposed by Royall and Tsou (2003). Next, we provide a parametric robust method originated from this idea to make inferences for correlated ordinal data and develop the robust likelihood functions for regression coefficients of mean modeled in a generalized linear model fashion. Finally, we extend the robust likelihood technique from generalized linear models (GLM) to partially-linear models (PLM), and use normal distribution as the working model to develop the robust likelihood functions for regression coefficients in large samples.
The legitimacy of this novel approach requires no knowledge of the underlying joint distributions so long as their second or fourth moments exist. The efficacy of the proposed parametric approach is demonstrated via simulations and the analyses of several real data sets.
Agresti A. Categorical data analysis (2nd edn). Wiley,Inc: Hoboken,NJ, 2002.
Birnbaum A. On the foundations of statistical inference (with discussion). Journal of the American Statistical Association 1962; 53: 259-326.
Cox DR, Hinckley DV. Theoretical statistics. Chapman and Hall, New York, 1974.
Chen JJ, Kodell RL, Howe RB, Gaylor DW. Analysis of trinomial responses from reproductive and developmental toxicity experiments. Biometrics 1991; 47: 1049- 1058.
Chien LC (2005) Parametric simultaneous robust inferences for regression coefficients in general regression problems under generalized linear models. Ph.D. dissertation.
Fraleigh JB, Beauregard RA. Linear Algebra. Prentice Hall, 1995.
Good PJ, Gaskins RA. Non-parametric roughness penalties for probability densities. Biometrika 1971; 58: 255–277.
Green PJ. Penalized likelihood for general semi-parametric regression models. International Statistical Review 1987; 55: 245–259.
Hacking I. Logic of Statistical Inference. New York: Cambridge University Press, 1965.
Huber PJ. Robust statistics. Wiley: New York, 1981.
Hastie TJ, Tibshirani RJ. Generalized Additive Models. Chapman and Hall: New York, 1990.
Jung SH, Kang SH. Testing for contingency tables with clustered order categorical data. Statistics in medicine 2001; 20: 785-794.
Koch GG, Carr GJ, Amara IA, Stokes ME, Uryniak TJ. Categorical data analysis. Statistical Methodology in the Pharmaceutical Sciences. Marcel Dekker: New York,1989.
Liang KY, Zeger SL. Longitudinal data analysis with generalized linear models. Biometrika 1986; 73: 13-22.
McCullagh P. Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society Series B 1980; 42: 109-142.
McCullagh P. Quasi-Likelihood Functions. Annals of Statistics 1983; 11: 59–67.
Molenberghs G, Lesaffre E. Marginal modelling of multivariate categorical data. Statistics in Medicine 1999; 18: 2237-2255.
Opsomer JD, Ruppert D. A root-n consistent backfitting estimator for semiparametric additive modelling. Journal of Computational and Graphical Statistics 1999; 8: 715–732.
Royall RM. Statistical Evidence-A Likelihood Paradigm. Chapman & Hall: New York, 1997.
Royall RM. On the probability of observing misleading statistical evidence (with discussion). Journal of the American Statistical Association 2000; 95: 760-780.
Royall RM, Tsou TS. Interpreting statistical evidence using imperfect models: Robust adjusted likelihood functions. Journal of the Royal Statistical Society, Series B 2003; 65: 391–404.
Searle SR. Matrix Algebra Useful for Statistics. Wiley: New York, 1982.
Speckman P. Kernel smoothing in partial linear models. Journal of the Royal Statistical Society, Series B 1988; 50: 413–436.
Tan M, Qu Y, Mascha ED, Schubert A. A Bayesian hierarchical model for multi-level repeated ordinal data: analysis of oral practice examination in a large anaesthesiology training programme. Statistics in Medicine 1999; 18: 1983-1992.
Tsou TS. Inferences of variance functions-a parametric robust way. Journal of Applied Statistics 2005; 32: 785-796.
Tsou TS. Robust Poisson regression. Journal of Statistical Planning and Inference 2006; 136: 3173-3186.
Tsou TS. A simple and exploratory way to determine the mean-variance relationship in generalized linear models. Statistics in Medicine 2007; 26: 1623-1631.
Tsou TS, Chen CH. Comparing means of several dependent populations of count-a parametric robust approach. Statistics in Medicine 2008; 27: 76-2585.
Wedderburn RWM. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 1974; 61: 439-447.
White H. Maximum likelihood estimation of misspecified models. Econometrica 1982; 50: 1–25.
Wand MP, Jones MC. Kernel Smoothing. Chapman and Hall: London, 1995.
Yatchew A. An elementary estimator of the partial linear model. Economics letters 1997; 57: 135–143.
Yatchew A. Scale economies in electricity distribution. Journal of Applied Econometrics 2000; 15: 187–210.
Yatchew A. Semiparametric Regression for the Applied Econometrician.Cambridge Univ. Press, 2003.