跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉士誠
Shi-Chen Liu
論文名稱: 以搜尋為基礎的道路線及障礙物偵測
Search-based Lane and Obstacle Detection
指導教授: 曾定章
Din-Chang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 91
語文別: 英文
論文頁數: 90
中文關鍵詞: 搜尋道路線障礙物偵測
外文關鍵詞: lane, obstacle, detection, search
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 日益繁忙的社會,交通運輸事業越顯複雜,人們對於交通安全的需求也越來越重視。電腦視覺及影像處理技術的研究也越來越成熟,已被廣泛考慮運用在自動駕駛、輔助駕駛、車輛監控…等交通運輸的議題上。本論文的研究即是發展用於輔助安全駕駛上,以搜尋為基礎 (search-based) 的道路線及障礙物偵測的方法。
    本論文的主要研究在於如何快速並有效地偵測出道路影像中的道路線以及前車所在的位置。傳統偵測道路線段的方法,通常是針對影像中的單一像素點 (pixel) 或是單一掃瞄線 (scan line) 來進行決策與判斷;不同於舊式的線段偵測方法,我們嘗試將像素點之間的關連性建立起來,建立道路模型 (road model) 配合像素強度 (pixel intensity) 或邊界強度的累積量加以搜尋,來達到偵測道路線的目的。其中,我們利用四種不同的分析方式 (原始影像、二值化處理、第一像素差、第二像素差) 來獲得不同的影像強度,並比較其效果。本論文所提出的方法,能夠有效的克服由於天候變化以及其他車輛對影像所造成的影響。
    在實驗方面,我們對於六種類型的影像: 晴天、陰天、黃昏、下雨、白色車輛、及其他車輛跨越道路線,加以分析,均能正確並有效率的偵測出道路線及前車。


    People pay their attention on the safe driving day after day. The computer vision and image processing techniques are broad applied on the safe driving, for example: automatic driving system, vehicle flow rate motoring, etc. In this thesis, we propose a search-based method for lane and obstacle detection.
    Our goal is to detect the lane markings and obstacles in the road images efficiently. Conventional detection methods analyze pixels one by one under the assumption in which the processes of any two pixels are independent. Unlike conventional methods, we try to construct the relationship among pixels to detect lane markings and obstacles during detection. We here use four kinds of information: original images, bi-level thresholded images, the first difference maps, and the second difference maps for analysis.
    In the experiments, six kinds of images: sunny, cloudy, dusky, rainy, white-car influence, and car on the lanemarking images are used to evaluate the performance of the proposed system.

    摘要 I 誌謝 II 目錄 III 第一章 緒論 一 第二章 相關研究 二 第三章 獨立於環境之門檻值 三 第四章 道路線偵測 四 第五章 障礙物偵測 五 第六章 實驗 六 第七章 結論 七 附錄 英文版論文 八

    [1] Aufrère, R., R. Chapuis, and F. Chausse, “A model-driven approach for real-time road recognition,” Machine Vision and Applications, Vol.13, No.2, pp.95-107, 2001.
    [2] Behringer, R. and N. Muller, “Autonomous road vehicle guidance from autobahnen to narrow curves,” IEEE Trans. on Robotics and Automation, Vol.14, Issue 5, pp.810-815, Oct.1998.
    [3] Bertozzi, M. and A. Broggi, “Real-time lane and obstacle detection on the GOLD system,” in Proc. IEEE Intelligent Vehicles''96, Tokyo, Japan, Sep.18-20, 1996, pp.213-218.
    [4] Bertozzi, M., A. Broggi, and S. Castelluccio, “A real-time oriented system for vehicle detection,” Journal of Systems Architecture, Vol.43, pp.317-325, 1997.
    [5] Bertozzi, M., A. Broggi, G. Conte, and A. Fascioli, “Obstacle and lane detection on ARGO,” in Proc. IEEE Intelligent Transportation Systems Conference''97, Boston, Nov.10-13, 1997, pp.1010-1015.
    [6] Bertozzi, M., A. Broggi, and A. Fascioli, “Stereo inverse perspective mapping: theory and applications,” Image and Vision Computing, Vol.16, pp.585-590, 1998.
    [7] Bertozzi, M., A. Broggi, G. Conte, and A. Fascioli, “Vision-based automated vehicle guidance: the experience of the ARGO vehicle,” in Tecniche di Intelligenza Artificiale e Pattern Recognition per la Visione Artificiale, Apr.6-7, 1998, pp.35-40.
    [8] Bertozzi, M., A. Broggi, G. Conte, and A. Fascioli, “The experience of the ARGO autonomous vehicle,” in Proc. SPIE’98-Enhanced and Synthetic Vision, Orlando, FL, Apr.13-17, 1998.
    [9] Bertozzi, M. and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Trans. on Image Processing, Vol.7, No.1, pp.62-81, 1998.
    [10] Bertozzi, M., A. Broggi, and A. Fascioli, “Experiments using MMX-based processors for real-time image processing on the ARGO vehicle,” In Proc. IEEE Intelligent Vehicles Sym., Stuttgart, Germany, Oct.28-30, 1998, pp.505-510.
    [11] Bertozzi, M., A. Broggi, A. Fasciolo, and A. Tibaldi, “An evolutionary approach to lane markings detection in road environments,” in Atti del 6 convegno dell’Associazione Italiana per I’Intelligenza Artificiale, Siena, Italy, Sep.2002, pp.627-736.
    [12] Betke, M., E. Haritaoglu, and L. S. Davis, “Real-time multiple vehicle detection and tracking from a moving vehicle,” Machine Vision and Applications, Vol.12, No.2, pp.69-83, 2000.
    [13] Bishop, R., “A survey of intelligent vehicle applications worldwide,” in Proc. IEEE Intelligent Vehicle Sym. 2000, Dearborn, MI, Oct.3-5, 2000, pp.25-30.
    [14] Bouguet, J.Y. and P. Perona, “Visual navigation using a single camera,” in Proc. 5th Int’l Conf. on Computer Vision, Boston, Jun.20-22, 1995, pp.645-652.
    [15] Bouguet, J.Y. and P. Perona, “Camera calibration from points and lines in dual-space geometry,” in Proc. 5th European Conf. on Computer Vision, Freiburg, Germany, June 2-6, 1998.
    [16] Broggi, A., “Parallel and local feature extraction: a real-time approach to road boundary detection,” IEEE Trans. on Image Processing, Vol.4, No.2, pp.217-223, 1995.
    [17] Broggi, A., “Robust real-time lane and road detection in critical shadow conditions,” in Proc. IEEE Int’l Sym. on Computer Vision, Coral Gables, Florida, Nov.19-21, 1995, pp.353-358.
    [18] Broggi, A. and S. Bertè, “Vision-based road detection in automotive systems: a real-time expectation-driven approach,” Journal of Artificial Intelligence Research, Vol.3, pp.325-348, Dec.1995.
    [19] Broggi, A., M. Bertozzi, A. Fascioli, C. G. L. Bianco, and A. Piazzi, “The ARGO autonomous vehicle’s vision and control systems,” Int. Journal of Intelligent Control and Systems, Vol.3, No.4, pp.409-441, 1999.
    [20] Broggi, A., M. Bertozzi, and A. Fascioli, “Architectural issues on vision-based automatic vehicle guidance: the experience of the ARGO project,” Real-Time Imaging Journal, Vol.6, Issue 4, pp.313-324, Aug. 2000.
    [21] Choi, S. Y. and J. M. Lee, “Optimal moving windows for real-time road image processing,” in IEEE Int’l Conf. on Robotics and Automation, Seoul, Korea, May21-26, 2001, pp.1220-1225.
    [22] Foda, S. G. and A. K. Dawoud, “Highway lane boundary determination for autonomous navigation,” in Proc. of IEEE Pacific Rim Conf. Communications, Computers and Signal Processing, Victoria, BC, Canada, Aug.26-28, 2001, pp.698-702.
    [23] Gehrig, S. K., A. Gern, S. Heinrich, and B. Woltermann, “Lane recognition on poorly structured roads: the bots dot problem in California,” in Proc. IEEE Int’l Conf. on Intelligent Transportation Systems, Singapore, Sep.3-6, 2002, pp.67-71.
    [24] Gern, A., U. Franke, and P. Levi, “Advanced lane recognition-fusing vision and radar,” in Proc. IEEE Intelligent Vehicles Sym. 2000, Dearborn, MI, Oct.3-5, 2000, pp.45-51.
    [25] Goldbeck, J. and B. Huertgen, “Lane detection and tracking by video sensors,” in Proc. IEEE Int’l Conf. on Intelligent Transportation Systems, Tokyo, Japan, Oct.5-8, 1999, pp.929-932.
    [26] Gonzalez, R. C. and R. E. Woods, Digital Image Processing, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 2002.
    [27] Hattori, H., “Stereo for 2D visual navigation,” in Proc. IEEE Intelligent Vehicles Sym. 2000, Dearborn, MI, Oct.3-5, 2000, pp.31-38.
    [28] Heikklilä, J. and O. Silvén, “A four-step camera calibration procedure with implicit image correction,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Juan, Puerto Rico, Jun.17-19, 1997, pp.95-107.
    [29] Heikklilä, J. and O. Silvén, “Calibration procedure for short focal length off-the-shelf CCD cameras,” in Proc. 13th Int’l Conf. on Pattern Recognition, Vienna, Austria, Aug.25-30, 1996, pp.166-170.
    [30] Ioannou, P. A., H. Jula, and E. B. Kosmatopoulos, “Collision avoidance analysis for lane changing and merging,” IEEE Trans. on Vehicular Technology, Vol.49, Issue 6, pp.2295-2308, Nov.2000.
    [31] Kaliyaperumal, K., K. Kluge, and S. Lakshmanan, “An algorithm for detecting roads and obstacles in radar images,” IEEE Trans. on Vehicular Technology, Vol.50, Issue 1, pp.170-182, Jan.2001.
    [32] Kreucher, C. and S. Lakshmanan, “LANA: a lane extraction algorithm that uses frequency domain features,” IEEE Trans. on Robotics and Automation, Vol.15, Issue 2, pp.343-350, Apr.1999.
    [33] Kreucher, C. and S. Lakshmanan, “A frequency domain approach to lane detection in roadway images,” in Proc. Int’l Conf. on Image Processing, Kobe, Japan, Oct.25-28, 1999, pp.31-35.
    [34] Martí, J., J. Freixenet, J. Batlle, and A. Casals, “A new approach to outdoor scene description based on learning and top-down segmentation,” Image and Vision Computing, Vol.19, Issue 14, pp.1041-1055, Dec. 2001.
    [35] McLauchlan, P. F. and J. Malik, “Vision for longitudinal vehicle control,” in Proc. Intelligent Transportation Systems Conf., Boston, MA, Nov.9-12, 1997, pp.918-923.
    [36] Takezaki, J., N. Ueki, T. Minowa, and H. Kondoh, “Support system for safe driving”, Hitachi Review, Vol.49, No.3, pp.107-114, 2000.
    [37] Wang, Y., D. Shen, and E. K. Teoh, “Lane detection using Catmull-Rom spline,” in IEEE Int’l Conf. on Intelligent Vehicles, Stuttgart, Germany, Oct.28-30, 1998, pp.51-57.
    [38] Yamada, M., K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. on Intelligent Transportation Systems, Vol.2, No.1, pp.26-31, 2001.
    [39] Yim, Y. and S. Y. Oh, “Three-feature based automatic lane detection algorithm for autonomous driving,” in Proc. IEEE Int’l Conf. on Intelligent Transportation Systems, Tokyo, Japan, Oct.5-8, 1999, pp.929-932.
    [40] Zhang, Z. Y., A Flexible New Technique for Camera Calibration, Tech. Report of Microsoft Research, MSR-TR-98-71, Microsoft Corporation, Dec.1998.
    [41] Zomotor, Z. and U. Franke, “Sensor fusion for improved vision based lane recognition and object tracking with range-finders,” in Proc. IEEE Int’l Conf. on Intelligent Transportation Systems, Boston, Nov.10-13, 1997, pp.595-600.
    [42] Computer Vision Research Group, Dept. of Electrical Engineering, California Institute of Technology.
    http://www.vision.caltech.edu/bouguetj/
    [43] 全國法規資料庫. http://law.moj.gov.tw/

    QR CODE
    :::