| 研究生: |
阮舒桃 Nguyen Thu Thao |
|---|---|
| 論文名稱: |
台灣東南部的環境噪聲斷層掃描 Ambient Noise Tomography in Southeastern Taiwan |
| 指導教授: |
郭陳澔
Hao Kuo-Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 台灣東南部 、環境噪聲斷層掃描 、群速度色散曲線 、淺層速度結構 |
| 外文關鍵詞: | Southeastern Taiwan, ambient noise tomography, group velocity dispersion curves, shallow velocity structure |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣東部的地殼結構是了解菲律賓海與歐亞板塊從俯衝到碰撞的構造演化和相互作用的關鍵。為了詳細探索該地區的地殼結構,環境噪聲層析成像與密集的地震陣列數據集一起使用。 2019年,我們在台灣東南部部署了40個臨時地震台站,為期約1個月。時間序列互相關以構建瑞利波格林函數。對於每個站對,使用頻率時間分析和圖像轉換技術挑選群速度色散曲線。然後,我們在 1-10 秒時獲得表面波色散。
基於對射線路徑圖的分析,結果與高頻(1-5 秒)群速度的地表地質高度相關。相對較高的群速度主要分佈在由變質岩組成的中央山脈。相對較低的群速度分佈在由沉積物組成的縱谷。在以沉積物和安山岩為主的海岸山脈,射線路徑具有一定的速度範圍,這對應於與其他地區相比岩石分佈相對變化。該研究提供了台灣東南部高頻頻散曲線(1-10s)的基礎數據集,為未來在整個台灣東部建立精細的速度淺層結構提供了基礎數據。
Crustal structure in eastern Taiwan is key for understanding the tectonic evolution and interaction between the Philippine Sea and Eurasian plates from subduction to collision. In order to explore the crustal structure in this region in detail, ambient noise tomography was used with a dense seismic array data set. We deployed 40 temporary seismic stations in Southeastern Taiwan in 2019 for about one month. Time series were cross-correlated to construct Rayleigh wave Green’s functions. For each station pair, group velocity dispersion curves were picked using a frequency-time analysis and image transformation technique. Then, we obtain surface-wave dispersions at 1–10 sec.
Based on analyzing the maps of the ray paths, the results are highly correlated with surface geology for high frequency (1-5 sec) group velocities. The relatively high group velocities are mostly distributed in the Central Range, which is composed of metamorphic rocks. The relatively low group velocities are distributed in the Longitudinal Valley which is composed of sediments. In the Coastal Range mainly composed of sediments and andesite, the ray paths are with a range of velocities, which corresponding to the relatively varying rock distribution comparing with other regions. This study provides a fundamental data set of high-frequency dispersion curves (1-10s) in Southeastern Taiwan for establishing a fine velocity shallow structure in the whole of eastern Taiwan in the future.
Aki, K., Richards, P.G., 2009. Quantitative seismology [WWW Document]. URL http://app.knovel.com/hotlink/toc/id:kpQSE00001/quantitative-seismology-2nd
Barrier, E., Angelier, J., 1986. Active collision in eastern Taiwan: The Coastal Range. Geodyn. Eurasia3-Philipp. Sea Plate Bound. 125, 39–72. https://doi.org/10.1016/0040-1951(86)90006-5
Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M., Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 169, 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x
Bromirski, P.D., Duennebier, F.K., 2002. The near-coastal microseism spectrum: Spatial and temporal wave climate relationships. J. Geophys. Res. Solid Earth 107, ESE 5-1. https://doi.org/10.1029/2001JB000265
Cheng, C.-Y., 2017. 3-D Shear Wave Shallow Crustal Structures at Meishan Fault Zone using Ambient Noise Tomography (MS). National Central University.
Cheng, W.-B., Wang, C., Shyu, C.-T., Shin, T.-C., 2002. Crustal structure of the convergent plate-boundary zone, eastern Taiwan, assessed by seismic tomography. Geol. Soc. Am. 358, 161—175. https://doi.org/10.1130/0-8137-2358-2.161
Cheng, W.-B., Wang, C., Shyu, C.-T., Shin, T.-C., 1998. A Three-Dimensional Vp Model of the Southeastern Taiwan Area and Its Tectonic Implications. Terr. Atmospheric Ocean. Sci. 9, 425–452. https://doi.org/10.3319/TAO.1998.9.3.425(TAICRUST)
Chin, S.-J., Lin, J.-Y., Chen, Y.-F., Wu, W.-N., Liang, C.-W., 2016. Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations. J. Asian Earth Sci. 128, 149–157. https://doi.org/10.1016/j.jseaes.2016.07.008
Dziewonski, A., Bloch, S., Landisman, M., 1969. A technique for the analysis of transient seismic signals. Bull. Seismol. Soc. Am. 59, 427–444.
Gerstoft, P., Tanimoto, T., 2007. A year of microseisms in southern California. Geophys. Res. Lett. 34. https://doi.org/10.1029/2007GL031091
Gutenberg, B., 1951. Revised travel times in southern California*. Bull. Seismol. Soc. Am. 41, 143–163. https://doi.org/10.1785/BSSA0410020143
Haubrich, R.A., Munk, W.H., Snodgrass, F.E., 1963. Comparative spectra of microseisms and swell. Bull. Seismol. Soc. Am. 53, 27–37.
Ho, C.S., 1986. A synthesis of the geologic evolution of Taiwan. Tectonophysics, Geodynamics of the Eurasia\3-Philippine Sea Plate Boundary 125, 1–16. https://doi.org/10.1016/0040-1951(86)90004-1
Hsu, T.L., 1956. Geology of the Coastal Range, eastern Taiwan. Bull Geol Surv Taiwan 8.
Huang, C.-Y., Chen, W.-H., Wang, M.-H., Lin, C.-T., Yang, S., Li, X., Yu, M., Zhao, X., Yang, K.-M., Liu, C.-S., Hsieh, Y.-H., Harris, R., 2018. Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview. Earth-Sci. Rev. 182, 102–140. https://doi.org/10.1016/j.earscirev.2018.01.015
Huang, L., Geng, W., Sun, Z., 2018. Origin of the serpentinites in the Lichi mélange, eastern Taiwan, China: implication from petrology and geochronology. China Geol. 1, 477–484. https://doi.org/10.31035/cg2018070
Kuo-chen, H., Wu, F.T., Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. J. Geophys. Res. Solid Earth 117. https://doi.org/10.1029/2011JB009108
Kuo-chen, H., Wu, Y.-M., Chang, C.-H., Hu, J.-C., Chen, W.-S., 2004. Relocation of Eastern Taiwan Earthquakes and Tectonic Implications. Terr. Atmospheric Ocean. Sci. 15, 647–666. https://doi.org/10.3319/TAO.2004.15.4.647(T)
Kuo-chen, H., Wu, Y.-M., Chen, Y.-G., Chen, R.-Y., 2007. 2003 Mw6.8 Chengkung earthquake and its related seismogenic structures. J. Asian Earth Sci., Earthquake geology and hazards in Taiwan 31, 332–339. https://doi.org/10.1016/j.jseaes.2006.07.028
Lee, A.W., Simpson, G.C., 1935. On the direction of approach of microseismic waves. Proc. R. Soc. Lond. Ser. - Math. Phys. Sci. 149, 183–199. https://doi.org/10.1098/rspa.1935.0056
Lepore, S., Markowicz, K., Grad, M., 2016. Impact of wind on ambient noise recorded by seismic array in northern Poland. Geophys. J. Int. 205, 1406–1413. https://doi.org/10.1093/gji/ggw093
Longuet-Higgins, M.S., Jeffreys, H., 1950. A theory of the origin of microseisms. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 243, 1–35. https://doi.org/10.1098/rsta.1950.0012
McNamara, D.E., Buland, R.P., 2004. Ambient Noise Levels in the Continental United States. Bull. Seismol. Soc. Am. 94, 1517–1527. https://doi.org/10.1785/012003001
Seats, K.J., Lawrence, J.F., Prieto, G.A., 2012. Improved ambient noise correlation functions using Welch’s method. Geophys. J. Int. 188, 513–523. https://doi.org/10.1111/j.1365-246X.2011.05263.x
Shapiro, N.M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science 307, 1615. https://doi.org/10.1126/science.1108339
Shyu, J.B.H., Chen, C.-F., Wu, Y.-M., 2016. Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Geodyn. Environ. East Asia GEEA 2014 692, 295–308. https://doi.org/10.1016/j.tecto.2015.12.026
Shyu, J.B.H., Sieh, K., Chen, Y.-G., Liu, C.-S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res. Solid Earth 110.
Snieder, R., Wapenaar, K., 2010. Imaging with ambient noise. Phys. Today 63, 44–49. https://doi.org/10.1063/1.3490500
Stehly, L., Campillo, M., Shapiro, N.M., 2006. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res. Solid Earth 111. https://doi.org/10.1029/2005JB004237
Stein, S., Wysession, M., 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Wiley-Blackwell.
Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Geodyn. Evol. East. Eurasian Margin 183, 57–76. https://doi.org/10.1016/0040-1951(90)90188-E
Teng, L.S., 1987. Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Acta Geol Taiwanica 25, 205–224.
Teng, L.S., 1979. Petrographical Study Of The Neogene Sandstones Of The Coastal Range, Eastern Taiwan (I. Northern Part). Sci. Rep. Natl. Taiwan Univ. ACTA Geol. Taiwanica 20, 129–156.
Tsai, V.C., 2009. On establishing the accuracy of noise tomography travel-time measurements in a realistic medium. Geophys. J. Int. 178, 1555–1564. https://doi.org/10.1111/j.1365-246X.2009.04239.x
Weaver, R., Froment, B., Campillo, M., 2009. On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J. Acoust. Soc. Am. 126, 1817–1826. https://doi.org/10.1121/1.3203359
Wu, F.T., Liang, W.-T., Lee, J.-C., Benz, H., Villasenor, A., 2009. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries. J. Geophys. Res. Solid Earth 114. https://doi.org/10.1029/2008JB005950
Yao, H., 2015. Manual for EGFAnalysisTimeFreq Dispersion Software.
Yao, H., Van Der Hilst, R.D., 2009. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet. Geophys. J. Int. 179, 1113–1132. https://doi.org/10.1111/j.1365-246X.2009.04329.x