| 研究生: |
蔡閔程 Min-Cheng Tsai |
|---|---|
| 論文名稱: |
膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器 Linear polarization rotators based on cholesteric and twisted-nematic liquid crystals |
| 指導教授: |
鄭恪亭
Ko-Ting Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 膽固醇液晶 、向列型液晶 、偏振旋轉器 、偶氮苯手性分子 |
| 外文關鍵詞: | cholesteric liquid crystal, twisted nematic LCs, polarization rotator, chiral azobenzene |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液晶顯示器及相關應用的發展至今已相當成熟,目前大量量產之液晶顯示器皆運用偏振光學的特性,如半波板(Half-wave plate)、扭轉向列型液晶 (Twisted nematic liquid crystal,簡稱TN-LC)等結構。此外旋轉線偏振光偏振方向之方法亦相當受到重視,如TN-LC結構、菲涅耳菱鏡(Fresnel rhomb)及法拉第效應(Faraday effect)等,而上述三種旋轉線偏振方向的方法各有其優缺點,以TN-LC為例,TN-LC須滿足Mauguin condition方能使任意波長線偏振光皆具備偏振旋轉特性,但並非任意線偏振角度入射皆能達成相同之偏振旋轉效果,其限制須將線偏振方向設定為平行液晶快軸或慢軸方向才能將其線偏振方向有效旋轉至所設定的方向,因此若能開發出任意波長及任意線偏振角度入射皆能有效達成線偏振旋轉效果的線性偏振旋轉器,相信其應用將極為廣大且多元。
Several optical devices, which are capable of manipulating polarization state of linearly polarized lights (LPLs), have been widely studying for several decades. Fresnel rhomb and some optical devices based on the famous Faraday’s effect can rotate the polarization direction of the input LPLs. Because of their unacceptable sizes for practical applications, these devices are not suitable for portable devices. Regarding liquid crystal (LC) polarization rotators, twisted nematic LCs (TNLCs), characteristic of their electrically switchable property and polarization rotation of LPLs based on the waveguide effect, have been extensively applying in all fields of optics and photonics.
[1] B. Bahoadur, Liquid crystals-applications and uses, (World Scientific Press, 1990).
[2] F. Reinizer, “Beitrage zur kenntiniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[3] O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[4] 陳言愈,電控及光控膽固醇液晶光柵之研究 (國立成功大學,碩士論文,民國100年).
[5] I. C. Khoo and S. T. Wu, Optics and nonlinear optics of liquid crystals, (World Scientific, 1993).
[6] O. Francescangeli, S. Slussarenko, and F. Simoni, “Light-induced surface sliding of the nematic director in liquid crystals,” Phys. Rev. Lett. 82, 1855 (1999).
[7] M. Marinelli and F. Mercuri, “Effects of fluctuations in the orientational order parameter in the cyanobiphenyl (nCB) homologous series,” Phys. Rev. E 61, 1616 (2000).
[8] H. Keller, “History of liquid crystals,” Mol. Cryst. Liq. Cryst. 21, 1 (1973).
[9] G. W. Gray, Thermotropic liquid crystals, (the Society of Chemical Industry 1987).
[10] W. H. de Jeu, Physical properties of liquid crystalline materials, (Gordon & Breach, 1980).
[11] H. S. Kitzerrow and C. Bahr, Chirality in Liquid Crystals, (Springer, New York, 2001).
[12] 松本正一,角田市良,液晶之基礎與運用 (國立編譯館, 1996).
[13] H. S. Kitzerrow and C. Bahr, Chirality in Liquid Crystals, (Springer, New York, 2001).
[14] A. Yariv, Quantum Electronics, (Wiley, New York, 1988).
[15] P. Yeh and C. Gu, Optics of liquid crystal displays, (John Wiley & Sons, Inc., 2006).
[16] G. R. Fowles, Introduction to modern optics, 2nd ed., (University of Utah, 1975).
[17] P. G. de Gennes, and J. Prost, The physics of liquid crystals, (Oxford University Press, 1993).
[18] L. M. Blinov and V. G. Chigrinov, Electrooptic effects in liquid crystal materials, (Springer-Verlag Publishing Co., 1994).
[19] M. Hara, H. Takezoe, and A. Fukuda, “Forced Rayleigh scattering in nCB's (n=5-9) with methyl red and binary mass diffusion constants,” Jpn. J. Appl. Phys. 25, 1756 (1986).
[20] P. J. Collings and Michael Hird, Introduction to liquid crystals chemistry and physics, (Taylor & Francis Ltd, 1997).
[21] P. G. de Gennes, “CALCUL DE LA DISTORSION D’UNE STRUCTURE CHOLESTERIQUE PAR UN CHAMP MAGNETIQUE,” Sol. State Commun. 6, 163 (1968).
[22] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281 (1968).
[23] T. V. Galstyan, V. E. Drnoyan, and S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52 (1996).
[24] Y. C. Liu, K. T. Cheng, H. F. Chen and A. Y. G. Fuh, “Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications,” Opt. Express 22, 4404 (2014).
[25] P. Fu, P. Ye, Z. Yu, and H. Lu, “Bragg reflection from a cholesteric liquid-crystal slab in the framework of nonlinear optics,” J. Opt. Soc. Am. B 4, 1392 (1987).
[26] 林宗賢,液晶光子晶體雷射現象與其光控制研究 (國立成功大學,碩士論文,民國92年).
[27] 丁啟倫,運用二維時域有限差分法分析液晶元件光學性質 (國立成功大學,碩士論文,民國94年).
[28] K. T. Cheng, P. Y. Lee, M. M. Qasim, C. K. Liu, W. F. Cheng, and T. D. Wilkinson, “Electrically switchable and permanently stable light scattering modes by dynamic fingerprint chiral textures,” ACS Appl. Mater. Interfaces 8, 10483 (2016).
[29] 邱謙育碩士論文
[30] Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129, 43 (2007).
[31] W. D. St. John, W. J. Fritz, Z. J. Lu, and D.-K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E 51, 1191-1198 (1995).
[32] 許維婷,液晶盒厚度量測方法的研究 (國立成功大學,碩士論文,民國93年).
[33] S. T. Wu and D. K. Yang, Reflective liquid crystal displays, (Wiley & Sons, Inc., 2001).