| 研究生: |
洪浩哲 Hao-jhe Hong |
|---|---|
| 論文名稱: |
西北太平洋副熱帶高壓西伸東退對西北太平洋熱帶氣旋氣候特性的影響 Impact of zonal variation of western North Pacific subtropical high on tropical cyclone climatology characteristics |
| 指導教授: |
曾仁佑
Ren-yow Tzeng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 西北太平洋副熱帶高壓 、西北太平洋熱帶氣旋 |
| 外文關鍵詞: | Western North Pacific subtropical high, Tropical cyclone |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西北太平洋副熱帶高壓(以下簡稱副高)為影響東亞地區夏季環流變化的主要系統之一,其影響主要來自西側邊緣西伸東退的變化。過去研究指出,副高西伸東退與季風槽消長造成的環流變化,有影響西北太平洋熱帶氣旋移動路徑的作用,但對於副高西伸時熱帶氣旋總生成個數減少的情形,仍未有一套完整的物理解釋,且副高對熱帶氣旋發展強度的影響也還不清楚。本研究目的在於了解西北太平洋副高西伸東退的行為,對西北太平洋熱帶氣旋移動路徑外的影響,如熱帶氣旋的總生成個數及強度的氣候特性等。
研究結果指出,在副高西伸年時,西北太平洋地區反氣旋式環流的東風距平,抑制了季風槽平均流的正壓轉換過程,使西北太平洋地區的環境紊流動能減少,造成熱帶氣旋的擾動較難生成,因而TC總生成個數有明顯減少的情形。同時,在西伸年環境渦度減小的影響下,熱帶氣旋的發展強度有較弱的現象。副高西伸的行為也使得季風槽有向低緯地區移動的情形,並帶動TC生成位置向南發展,增加了熱帶氣旋侵襲菲律賓與南海地區的頻率,也使得颱風從南部侵襲台灣的機會增加。東退年時,西北太平洋熱帶氣旋的活動則呈現較為活躍的情形,在氣旋式環流西風距平的影響下,季風槽提供了西北太平洋地區較多的正壓轉換能量,使熱帶擾動的生成個數增多,且在渦度場增強的影響下,強氣旋的生成個數有增加的情形。此外,季風槽北移也使得熱帶氣旋生成位置偏北,使日本與東海地區熱帶氣旋的出現頻率有上升的趨勢,同時造成侵台颱風有較多的機會從北部西行及東部北轉影響台灣。
Western North Pacific subtropical high(WNPSH) is one of the most important systems in East Asia particularly in summer. The circulation anomaly caused by zonal variation of WNPSH affects the track of tropical cyclones. But the relationship between WNPSH and other tropical cyclone characteristics, such as population and intensity, are not well studied. The purpose of this study is to find out the effect of zonal variation of WNPSH on tropical cyclone climatology characteristics, for example, the population and intensity of tropical cyclones.
In WNPSH westward (eastward) year, anticyclonic (cyclonic) circulation anomaly occurred in western Pacific. The energy due to barotropic conversion from mean flow is suppressed (enhanced) by easterly (westerly) anomaly, reduced (increased) the amount of eddy kinetic energy in western Pacific. The results show significant decreasing (increasing) of tropical cyclone population caused by change of eddy kinetic energy in western Pacific. And the intensity of tropical cyclone weakened (strengthened) due to reduce (increase) of low-level vorticity in westward (eastward) year. On the other hand, the genesis location of tropical cyclone shifted southward (northward) through the meridional shift of monsoon trough, caused the increasing occurrence frequency of tropical cyclone in Philippines and South China Sea (Japan and East China sea). And also increase the probability of passage of typhoon through south (north and east) of Taiwan.
鐘珮瑄,2007:夏季西北太平洋副熱帶高壓之年際及年代際變化。國立中央大學大氣物理研究所博士論文。
楊承道,2008:氣候變遷對西北太平洋熱帶氣旋的影響。國立中央大學大氣物理所碩士論文。
李孟軒,2009:氣候異變(1979年)前後期夏季西北太平洋副高西伸東退之特性研究。國立中央大學大氣物理所碩士論文。
Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-701.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.
——, K. Emanuel, and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834.
Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 1354–1374.
——, 2000: Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Climate, 13, 2960–2972.
——, 2006: Comment on "Changes in tropical cyclone number, duration, and intensity in a warming environment". Science., 311, 1713.
Charney, J. G., A. Eliassen, 1964: On the Growth of the Hurricane Depression. J. Atmos. Sci., 21, 68–75.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, J., T. Li, and C. Shih, 2010: Tropical cyclone– and monsoon-induced rainfall variability in Taiwan. J. Climate, 23, 4107–4120.
Chen, T. C., and S.-P. Weng, 1998: Interannual variation of the summer synoptic-scale disturbance activity in the western tropical Pacific. Mon. Wea. Rev., 126, 1725–1733.
——, S. Y. Wang, and M. C. Yen, 2006: Interannual variation of the tropical cyclone activity over the western North Pacific. J. Climate, 19, 5709–5720.
——, ——, ——, and A. J. Clark, 2009: Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Wea. Forecasting, 24, 646-666.
Chung, P.-H., C.-H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 116, D13111, doi:10.1029/2010JD015554.
DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 2076–2087.
Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.
——, 1988: Toward a general theory of hurricanes. Am. Sci., 76, 370-379.
——, 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.
——, 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497-5509.
Gray, W. M., 1975: Tropical cyclone genesis. Dept. of Atmos. Sci. Paper No. 234, Colorado State University, Fort Collins, Co, 121pp. [Available from Dept. of Atmospheric Science, Colorado State University, Ft. Collins, CO 80523.]
Hodges, K. I., 1994: A general method for tracking analysis and its application to meteorological data. Mon. Wea. Rev., 122, 2573–2586.
Holton, J. R., 2004: An introduction to dynamic meteorology. Fourth edition, 535pp.
Hoskins, B. J., 1996: On the existence and strength of the summer subtropical anticyclones. Bull. Amer. Meteor. Soc., 77, 1287-1292.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.
Kim, J.-H., C.-H. Ho, C.-H. Sui, and S. K. Park, 2005: Dipole structure of interannual variations in summertime tropical cyclone activity over East Asia. J. Climate, 18, 5344–5356.
Kosaka, Y., and H. Nakamura, 2010: Mechanisms of meridional teleconnection observed between a summer monsoon system and a subtropical anticyclone. Part I: The Pacific–Japan pattern. J. Climate, 23, 5085–5108.
Lambert, S. J., 1988: A cyclone climatology of the Canadian Climate Centre general circulation model. J. Climate, 1, 109–115.
Lau, K. M., and M. T. Li, 1984: The monsoon of East Asia and its global associations—A survey. Bull. Amer. Meteor. Soc., 65, 114–125.
Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Ocean. Sci., 16, 285–314.
Liu, K. S., and J. C. L. Chan, 2008: Interdecadal variability of western North Pacific tropical cyclone tracks. J. Climate, 21, 4464-4476.
Lu, R., 2001: Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Japan, 79, 771-783.
Lu, X., H. Yu, and X. Lei, 2011: Statistics for size and radial wind profile of tropical cyclones in the western North Pacific. Acta Meteor. Sinica, 25, 104-112.
Maloney, E. D., and D. L. Hartmann, 2001: The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558.
Molnar, G. I., and J. Susskind, 2006: Satellite sounder-based OLR-, cloud- and atmospheric temperature climatologies for climate analyses. [In Algorithms and Technologies for Multispectral, Hysperspectral, and Ultraspectral Imagery XII, edited by S. S. Shen, and P. E. Lewis, Proc. SPIE Int. Soc. Opt. Eng., 6233, 62331D.]
Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE data. Mon. Wea. Rev., 107, 994–1013.
Nakazawa, T., and K. Rajendran, 2007: Relationship between tropospheric circulation over the western North Pacific and tropical cyclone approach/landfall on Japan. J. Meteor. Soc. Japan, 85, 101-114.
Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc., 65, 373-389.
Simpson, R. H., and H. Riehl, 1981: The Hurricane and Its Impact. Louisiana State University Press, 398 pp.
Tao, S. -Y. and L. -X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.P. Chang and T.N.Krishnamuti, Eds., Oxford University Press, 60-92.
Wang, B., and R. Wu, 1997: Peculiar temporal structure of the South China Sea summer monsoon. Adv. Atmos. Sci., 14, 177–194.
——, and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643-1658.
Wilks, D. S., 2006: Statistical methods in the atmospheric sciences. Second edition, 627pp.
Wu, B., T. Li, and T. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during the El Nin˜o decaying summer. J. Climate, 23, 2974–2986.
Wu, L., Z. P. Wen, R. H. Huang, and R. G. Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Mon. Wea. Rev., 140, 140-150.
Wu, R., and B. Wang, 2001: Multi-stage onset of summer monsoon over the western North Pacific. Climate Dyn., 17, 277–289.
Zhou, T., and Coauthors, 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215.