跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許文政
Wun-jheng Syu
論文名稱: 利用生物素改質之幾丁聚醣進行基因原位傳送
The Use of Biotinylated Chitosan for In-situ Gene Delivery
指導教授: 胡威文
Wei-wen Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 125
中文關鍵詞: 生物素改質原位基因傳送幾丁聚醣
外文關鍵詞: Chitosan, in situ gene delivery, Biotinylation
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中將非病毒載體—幾丁聚醣以化學改質的方法,進行不同程度的
    生物素接枝,並以正負電荷吸引之方式,將生物素幾丁聚醣與質體DNA,
    以不同胺基/磷酸根莫耳比組裝成奈米粒子。經由動態雷射散射粒徑分佈儀
    顯示,奈米粒子的粒徑大小分佈在66.8 nm 至109.8 nm 以及表面電位介於
    21.6 至36.0 mV 之間,均適合應用於基因傳送。此外,經由生物素改質的
    幾丁聚醣,依然能提供質體DNA 良好的包覆率與保護能力。同時由LDH
    及MTS 測試顯示,生物素改質並不會影響生物合適性,甚至能減緩細胞毒
    性。透過生物素與卵白素間作用力的調整,生物素之奈米粒子可以被固定
    於基材表面進行基因原位傳送,相較於以懸浮方式送藥的未改質奈米粒
    子,本方法可以提升約4.5 倍的轉染效率。


    In this research, we modified chitosan, the non-viral vector, with different
    degrees of biotin moieties. By electrostatic interaction, we prepared
    self-assemble nanoparticles using biotinylated-chitosan and plasmid DNA in
    different amine/phosphate ratio. The dynamic laser scattering experiment has
    demonstrated that particle sizes of biotinylated nanoparticles were between the
    66.8 nm to 109.8 nm and the Zeta potential was between 21.6 to 36.0 mV,
    suggesting that these nanoparticles were suitable for gene delivery. In addition,
    biotinylated chitosan may effectively bind DNA to protect it from DNase I
    digestion. The LDH and MTS assays suggested that biotin modification did not
    only maintain the biocompatibility of chitosan, but also reduce the cytotoxicity.
    Through the optimatization of biotin-avidin interaction, biotinylated
    nanoparticles may be immobilized on material surfaces for in situ gene delivery.
    Compares to bolus gene delivery, our developed in situ gene delivery may
    enhance the transfection efficiency of 4.5 folds. These results suggest that our
    strategy successfully improved transfection efficiency of non-viral vectors.

    目錄 摘要........................................................................................................................I Abstract ................................................................................................................ II 致謝..................................................................................................................... III 目錄.....................................................................................................................IV 圖目錄.............................................................................................................. VIII 表目錄.................................................................................................................. X 縮寫表.................................................................................................................XI 第壹章 序論...................................................................................................... 1 第貳章 文獻回顧.............................................................................................. 3 2-1 組織工程................................................................................................ 3 2-2 基因傳送療法........................................................................................ 5 2-3 基因載體................................................................................................ 7 2-4 原位基因傳送...................................................................................... 10 V 2-4-1 幾丁聚醣應用於原位基因傳送.............................................. 10 2-4-2 生物素與卵白素作用力.......................................................... 11 2-5 實驗假設.............................................................................................. 12 第參章 實驗材料與方法................................................................................ 14 3-1 試藥與原料.......................................................................................... 14 3-1-1 質體DNA ................................................................................ 14 3-1-2 細胞.......................................................................................... 16 3-1-3 藥品.......................................................................................... 16 3-2 儀器...................................................................................................... 18 3-3 試藥配製.............................................................................................. 19 3-4 質體DNA 純化................................................................................... 21 3-5 HEK293T 細胞培養............................................................................. 24 3-6 幾丁聚醣之分子量對轉染效率影響................................................. 27 3-6-1 細胞轉染.................................................................................. 27 VI 3-6-2 螢光表現量分析...................................................................... 28 3-6-3 ONPG 分析............................................................................... 28 3-7 生物素改質之幾丁聚醣製備............................................................. 31 3-7-1 生物素改質(Biotinylation) ...................................................... 31 3-7-2 生物素接枝量分析.................................................................. 31 3-8 生物素之奈米粒子製備及物理化學性質鑑定................................. 33 3-8-1 生物素之奈米粒子製備.......................................................... 33 3-8-2 雷射粒徑分佈儀分析.............................................................. 33 3-8-3 掃描式電子顯微鏡觀察.......................................................... 33 3-8-4 包覆率分析.............................................................................. 34 3-8-5 保護能力分析.......................................................................... 35 3-8-6 MTS 測試對細胞活性分析...................................................... 36 3-8-7 乳酸脫氫酶(LDH)測試對細胞毒性分析............................... 37 3-9 原位基因轉染...................................................................................... 39 VII 第肆章 結果與討論........................................................................................ 43 4-1 幾丁聚醣之分子量對轉染效率影響................................................. 43 4-2 生物素改質之幾丁聚醣製備............................................................. 47 4-2-1 生物素接枝量分析.................................................................. 49 4-3 奈米粒子物理化學性質鑑定............................................................. 51 4-3-1 動態雷射散射粒徑分佈儀...................................................... 51 4-3-2 掃描式電子顯微鏡觀察.......................................................... 54 4-3-3 包覆率分析.............................................................................. 55 4-3-4 保護能力分析.......................................................................... 60 4-3-5 MTS 測試對細胞活性分析................................................... 63 4-3-6 乳酸脫氫酶(LDH)測試對細胞毒性分析............................... 65 4-4 原位基因轉染...................................................................................... 67 第伍章 結論.................................................................................................... 76 參考文獻............................................................................................................. 97 VIII 圖目錄 圖 2 - 1 幾丁聚醣 (Chitosan)分子結構圖...................................................... 11 圖 3 - 1 pCMV-β結構圖.................................................................................. 14 圖 3 - 2 pEGFP-C3 結構圖................................................................................ 15 圖 4 - 1 β-Gal assay 反應圖............................................................................ 44 圖 4 - 2 生物素改質反應圖............................................................................. 47 圖 4 - 3 HABA assay 示意圖............................................................................. 49 圖 4 - 4 MTS assay 反應圖............................................................................... 64 圖 4 - 5 不同分子量的幾丁聚醣對細胞之轉染效率(pEGFP 轉染).............. 76 圖 4 - 6 不同分子量的幾丁聚醣對細胞之轉染效率(pCMVβ轉染) ............. 78 圖 4 - 7 生物素接枝程度分析(HABA assay).................................................. 79 圖 4 - 8 表面電位及粒徑大小分析................................................................. 80 IX 圖 4 - 9 掃描式電子顯微鏡............................................................................. 82 圖 4 - 10 螢光標定法分析包覆率.................................................................... 83 圖 4 - 11 電泳法分析包覆率............................................................................. 84 圖 4 - 12 保護能力分析.................................................................................... 85 圖 4 - 13 細胞活性分析(MTS assay)................................................................ 89 圖 4 - 14 細胞毒性分析(LDH assay)................................................................ 90 圖 4 – 15 藉由調整卵白素鍍盤濃度來控制Biotin-NPs 的原位基因效率... 91 圖 4 - 16 不同卵白素鍍盤濃度對轉染效率的影響........................................ 95 圖 4 - 17 DNA 劑量對轉染效率影響............................................................... 96 X

    參考文獻
    1. Langer, R. and J.P. Vacanti, "Tissue engineering." Science, 260(5110): p.
    920-6. 1993
    2. Tabata, Y., et al., "Biodegradable hydrogels for bone regeneration through
    growth factor release." Pure Appl Chem, 70(6): p. 1277-1282. 1998
    3. Kofron, M.D. and C.T. Laurencin, "Bone tissue engineering by gene
    delivery." Adv Drug Deliv Rev, 58(4): p. 555-576. 2006
    4. Hannallah, D., et al., "Gene therapy in orthopaedic surgery." J Bone Joint
    Surg Am, 84A(6): p. 1046-1061. 2002
    5. Jiang, Z.L., et al., "Local high-capacity adenovirus-mediated mCTLA4lg
    and mCD40lg expression prolongs recombinant gene expression in skeletal
    muscle." Mol Ther, 3(6): p. 892-900. 2001
    6. Gardlik, R., et al., "Vectors and delivery systems in gene therapy." Med Sci
    Monitor, 11(4): p. Ra110-Ra121. 2005
    7. Hu, W.W., et al., "Development of adenovirus immobilization strategies for
    in situ gene therapy." J Gene Med, 10(10): p. 1102-1112. 2008
    99
    8. Hu, W.W., et al., "Localized viral vector delivery to enhance in situ
    regenerative gene therapy." Gene Ther, 14(11): p. 891-901. 2007
    9. Nishida, J. and T. Shimamura, "Methods of reconstruction for bone defect
    after tumor excision: a review of alternatives." Med Sci Monit, 14(8): p.
    RA107-13. 2008
    10. Paul, C.N., "Skin grafting in burns." Wounds, 20(7): p. 199-202. 2008
    11. Niederauer, G.G., et al., "Bone grafting in arthroscopy and sports medicine."
    Sports Med Arthrosc, 14(3): p. 163-8. 2006
    12. Mooney, D.J. and A.G. Mikos, "Growing new organs." Sci Am, 280(4): p.
    60-5. 1999
    13. Shin, H., et al., "Biomimetic materials for tissue engineering." Biomaterials,
    24(24): p. 4353-64. 2003
    14. Vacanti, J.P. and R. Langer, "Tissue engineering: the design and fabrication
    of living replacement devices for surgical reconstruction and transplantation."
    Lancet, 354 Suppl 1: p. SI32-4. 1999
    15. Lee, K.Y. and D.J. Mooney, "Hydrogels for tissue engineering." Chem Rev,
    101(7): p. 1869-79. 2001
    100
    16. Macri, L., et al., "Growth factor binding to the pericellular matrix and its
    importance in tissue engineering." Adv Drug Deliv Rev, 59(13): p. 1366-81.
    2007
    17. Lee, S.H. and H. Shin, "Matrices and scaffolds for delivery of bioactive
    molecules in bone and cartilage tissue engineering." Adv Drug Deliv Rev,
    59(4-5): p. 339-59. 2007
    18. Lutolf, M.R., et al., "Repair of bone defects using synthetic mimetics of
    collagenous extracellular matrices." Nat Biotechnol, 21(5): p. 513-518. 2003
    19. Sheridan, M.H., et al., "Bioadsorbable polymer scaffolds for tissue
    engineering capable of sustained growth factor delivery." J Control Release,
    64(1-3): p. 91-102. 2000
    20. Tabata, Y., "Tissue regeneration based on growth factor release." Tissue Eng,
    9: p. S5-S15. 2003
    21. Boontheekul, T. and D.J. Mooney, "Protein-based signaling systems in
    tissue engineering." Curr Opin Biotech, 14(5): p. 559-565. 2003
    22. Ulrich, K., et al., "Keratinocyte growth factor therapy in murine oleic
    acid-induced acute lung injury." Am J Physiol-Lung C, 288(6): p. L1179-L1192.
    2005
    101
    23. del Solar, G., et al., "Replication and control of circular bacterial plasmids."
    Microbiol Mol Biol Rev, 62(2): p. 434-64. 1998
    24. Franceschi, R.T., "Biological approaches to bone regeneration by gene
    therapy." J Dent Res, 84(12): p. 1093-1103. 2005
    25. Krebsbach, P.H., et al., "Gene therapy-directed osteogenesis:
    BMP-7-transduced human fibroblasts form bone in vivo." Hum Gene Ther,
    11(8): p. 1201-1210. 2000
    26. Hu, W.W., et al., "Bone Regeneration in Defects Compromised by
    Radiotherapy." J Dent Res, 89(1): p. 77-81. 2010
    27. Tseng, W.C., et al., "Transfection by cationic liposomes using simultaneous
    single cell measurements of plasmid delivery and transgene expression." J Biol
    Chem, 272(41): p. 25641-25647. 1997
    28. Varga, C.M., et al., "Quantitative analysis of synthetic gene delivery vector
    design properties." Mol Ther, 4(5): p. 438-446. 2001
    29. Crystal, R.G., "Transfer of Genes to Humans - Early Lessons and Obstacles
    to Success." Science, 270(5235): p. 404-410. 1995
    30. Oligino, T.J., et al., "Vector systems for gene transfer to joints." Clin Orthop
    102
    Relat R, (379): p. S17-S30. 2000
    31. Hu, W.W., et al., "Digoxigenin modification of adenovirus to spatially
    control gene delivery from chitosan surfaces." J Control Release, 135(3): p.
    250-258. 2009
    32. Hu, W.W., et al., "The use of reactive polymer coatings to facilitate gene
    delivery from poly (epsilon-caprolactone) scaffolds." Biomaterials, 30(29): p.
    5785-5792. 2009
    33. Wolff, J.A., et al., "Direct Gene-Transfer into Mouse Muscle Invivo."
    Science, 247(4949): p. 1465-1468. 1990
    34. Herweijer, H. and J.A. Wolff, "Progress and prospects: naked DNA gene
    transfer and therapy." Gene Ther, 10(6): p. 453-458. 2003
    35. Niidome, T. and L. Huang, "Gene therapy progress and prospects: Nonviral
    vectors." Gene Ther, 9(24): p. 1647-1652. 2002
    36. Lasic, D.D. and D. Papahadjopoulos, "Liposomes Revisited." Science,
    267(5202): p. 1275-1276. 1995
    37. Huang, Y.C., et al., "Bone regeneration in a rat cranial defect with delivery
    of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4
    103
    (BMP-4)." Gene Ther, 12(5): p. 418-426. 2005
    38. Suh, W.H., et al., "Anti-JL1 antibody-conjugated poly (L-lysine) for
    targeted gene delivery to leukemia T cells." J Control Release, 72(1-3): p.
    171-178. 2001
    39. Akinc, A., et al., "Synthesis of poly(beta-amino ester)s optimized for highly
    effective gene delivery." Bioconjugate Chem, 14(5): p. 979-988. 2003
    40. Bielinska, A.U., et al., "DNA complexing with polyamidoamine dendrimers:
    Implications for transfection." Bioconjugate Chem, 10(5): p. 843-850. 1999
    41. Kabanov, V.A., et al., "Interpolyelectrolyte complexes formed by DNA and
    astramol poly(propylene imine) dendrimers." Macromolecules, 33(26): p.
    9587-9593. 2000
    42. Segura, T. and L.D. Shea, "Materials for non-viral gene delivery." Annu
    Rev Mater Res, 31: p. 25-46. 2001
    43. Bengali, Z., et al., "Gene delivery through cell culture substrate adsorbed
    DNA complexes." Biotechnol Bioeng, 90(3): p. 290-302. 2005
    44. Pannier, A.K., et al., "Substrate-mediated delivery from self-assembled
    monolayers: effect of surface ionization, hydrophilicity, and patterning." Acta
    104
    Biomater, 1(5): p. 511-22. 2005
    45. Jang, J.H., et al., "Surface adsorption of DNA to tissue engineering scaffolds
    for efficient gene delivery." J Biomed Mater Res A, 77(1): p. 50-8. 2006
    46. Singh, M., et al., "A modified process for preparing cationic
    polylactide-co-glycolide microparticles with adsorbed DNA." Int J Pharm,
    327(1-2): p. 1-5. 2006
    47. Ohashi, S., et al., "Successful genetic transduction in vivo into synovium by
    means of electroporation." Biochem Bioph Res Co, 293(5): p. 1530-1535. 2002
    48. Uchida, E., et al., "Comparison of the efficiency and safety of non-viral
    vector-mediated gene transfer into a wide range of human cells." Biol Pharm
    Bull, 25(7): p. 891-897. 2002
    49. Bengali, Z. and L.D. Shea, "Gene delivery by immobilization to
    cell-adhesive substrates." Mrs Bull, 30(9): p. 659-662. 2005
    50. Levy, R.J., et al., "Localized adenovirus gene delivery using antiviral IgG
    complexation." Gene Ther, 8(9): p. 659-67. 2001
    51. Shea, L.D., et al., "Gene delivery through cell culture substrate adsorbed
    DNA complexes." Biotechnol Bioeng, 90(3): p. 290-302. 2005
    105
    52. Segura, T. and L.D. Shea, "Surface-tethered DNA complexes for enhanced
    gene delivery." Bioconjugate Chem, 13(3): p. 621-629. 2002
    53. Hunter, A.C., "Molecular hurdles in polyfectin design and mechanistic
    background to polycation induced cytotoxicity." Adv Drug Deliv Rev, 58(14): p.
    1523-1531. 2006
    54. Onishi, H. and Y. Machida, "Biodegradation and distribution of
    water-soluble chitosan in mice." Biomaterials, 20(2): p. 175-182. 1999
    55. Rao, S.B. and C.P. Sharma, "Use of chitosan as a biomaterial: Studies on its
    safety and hemostatic potential." J Biomed Mater Res, 34(1): p. 21-28. 1997
    56. Aspden, T.J., et al., "Chitosan as a nasal delivery system: The effect of
    chitosan solutions on in vitro and in vivo mucociliary transport rates in human
    turbinates and volunteers." J Pharm Sci, 86(4): p. 509-513. 1997
    57. Vinsova, J. and E. Vavrikova, "Recent advances in drugs and prodrugs
    design of chitosan." Curr Pharm Design, 14(13): p. 1311-1326. 2008
    58. Strand, S.P., et al., "Influence of chitosan structure on the formation and
    stability of DNA-chitosan polyelectrolyte complexes." Biomacromolecules, 6(6):
    p. 3357-3366. 2005
    106
    59. Masotti, A. and G. Ortaggi, "Chitosan Micro- and Nanospheres: Fabrication
    and Applications for Drug and DNA Delivery." Mini-Rev Med Chem, 9(4): p.
    463-469. 2009
    60. Li, Z.S., et al., "Chitosan-alginate hybrid scaffolds for bone tissue
    engineering." Biomaterials, 26(18): p. 3919-3928. 2005
    61. Kim, T.H., et al., "Chemical modification of chitosan as a gene carrier in
    vitro and in vivo." Prog Polym Sci, 32(7): p. 726-753. 2007
    62. Mei, L., et al., "Immobilization of gene vectors on polyurethane surfaces
    using a monoclonal antibody for localized gene delivery." J Gene Med, 8(6): p.
    690-698. 2006
    63. Green, N.M., "The molecular weight of avidin." Biochem J, 92(2): p.
    16C-17C. 1964
    64. Green, N.M., "Avidin. 1. The Use of (14-C)Biotin for Kinetic Studies and
    for Assay." Biochem J, 89: p. 585-91. 1963
    65. De Laporte, L. and L.D. Shea, "Matrices and scaffolds for DNA delivery in
    tissue engineering." Adv Drug Deliv Rev, 59(4-5): p. 292-307. 2007
    66. Zheng, J., et al., "Transfection of cells mediated by biodegradable polymer
    107
    materials with surface-bound polyethyleneimine." Biotechnol Prog, 16(2): p.
    254-7. 2000
    67. Mansouri, S., et al., "Characterization of folate-chitosan-DNA nanoparticles
    for gene therapy." Biomaterials, 27(9): p. 2060-5. 2006
    68. Buschmann, M.D., et al., "High efficiency gene transfer using
    chitosan/DNA nanoparticles with specific combinations of molecular weight and
    degree of deacetylation." Biomaterials, 27(27): p. 4815-4824. 2006
    69. Pego, A.P., et al., "Improving chitosan-mediated gene transfer by the
    introduction of intracellular buffering moieties into the chitosan backbone." Acta
    Biomater, 5(8): p. 2995-3006. 2009
    70. Rodriguez, J.R., et al., "DNA-chitosan complexation: A dynamic light
    scattering study." Colloid Surface A, 339(1-3): p. 145-152. 2009
    71. Wagner, E., et al., "Transferrin Polycation DNA Complexes - the Effect of
    Polycations on the Structure of the Complex and DNA Delivery to Cells." Proc
    Natl Acad Sci U S A, 88(10): p. 4255-4259. 1991
    72. MacLaughlin, F.C., et al., "Chitosan and depolymerized chitosan oligomers
    as condensing carriers for in vivo plasmid delivery." J Control Release, 56(1-3):
    p. 259-272. 1998
    108
    73. Mao, H.Q., et al., "Chitosan-DNA nanoparticles as gene carriers: synthesis,
    characterization and transfection efficiency." J Control Release, 70(3): p.
    399-421. 2001
    74. Erbacher, P., et al., "Chitosan-based vector/DNA complexes for gene
    delivery: Biophysical characteristics and transfection ability." Pharm Res, 15(9):
    p. 1332-1339. 1998
    75. Huang, M., et al., "Transfection efficiency of chitosan vectors: Effect of
    polymer molecular weight and degree of deacetylation." J Control Release,
    106(3): p. 391-406. 2005
    76. Zhang, N., et al., "Mannan-Modified Solid Lipid Nanoparticles for Targeted
    Gene Delivery to Alveolar Macrophages." Pharm Res, 27(8): p. 1584-1596.
    2010
    77. Kim, J.H., et al., "Optimization of 25 kDa linear polyethylenimine for
    efficient gene delivery." Biologicals, 35(3): p. 165-171. 2007
    78. Lobner, D., "Comparison of the LDH and MTT assays for quantifying cell
    death: validity for neuronal apoptosis?" J Neurosci Meth, 96(2): p. 147-152.
    2000
    79. Leong, K.W. and A.F. Adler, "Emerging links between surface
    109

    QR CODE
    :::