| 研究生: |
李宣皓 Xuan-Hao Lee |
|---|---|
| 論文名稱: |
表面結構擴散片之設計、製作與應用 Design and Manufacture of Surface-structured Diffuser and the Applications |
| 指導教授: |
孫慶成
Ching-Cherng Sun |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 表面結構擴散片 、路燈 、全像儲存 、照明 、光塑形 、微透鏡陣列 |
| 外文關鍵詞: | Surface-structured diffuser, Street light, Holographic storage, Lighting, Beam shaping, Micro-lens array |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係從光害的角度切入,探討如何讓光可以有效地集中、侷限並均勻地照射到使用者所需要之目標區域內,以減少能量之損失、降低眩光之影響以及抑制光害之生成,並且以此議題為出發點,開發出一款具有高達89% 之高穿透率以及光塑形效果的高性能表面結構擴散片,其係以玻璃燒結式反覆縮模法搭配大面積翻印技術製作而得。並以此表面結構擴散片做為核心元件,發展出兩款嶄新的高性能照明燈具,包括一高性能LED路燈設計以及一智慧型照明燈具。在高性能LED路燈設計方面,我們針對Central type、Zigzag type以及Single-sided type三種路燈排列方式,依據此路燈設計概念,開發出三款高性能路燈照明模組,在燈桿高度為10 m的情況下,Central type、Zigzag type以及Single-sided type之光學效率分別為87.8%、87.8% 以及87.2%;中心照度分別為20 lux、17.5 lux 和17.9 lux;平均照度分別為19.2 lux、17.2lux和16.2 lux;均勻度則分別為0.877、0.633以及0.806。若以一30 m × 14 m的照射區域面積為目標區域,Central type、Zigzag type以及Single-sided type三種路燈排列方式所獲得之光學利用率分別可高達81%、78.8%以及73.6%。
在智慧型照明燈具方面,我們以表面結構擴散片的性能為基礎,利用填充液體以達成表面補償效果之方式,提出一款兼具有快速光形調制效果以及多種操作模態的智慧照明燈具,並且成功地以實驗驗證方式證實其可行性。在沒有犧牲光學效率的情況下,光形在折射率為1.33至1.5的範圍內可獲得一連續性的變化。
除了兩款高性能照明燈具外,本論文更以表面結構擴散片特性為基礎,將一具有與表面結構擴散片相同性能的結構散射片應用於全像光學儲存研究中,探討其對位移靈敏度以及能源效率之影響。不同於毛玻璃,該結構擴散片能藉由其高達90% 的穿透率以及出光角度控制能力,將90% 的能量皆侷限在一特定範圍內,對於能源效率的提升實具助益。當晶體厚度為1 cm、結構散射片被照射區域的直徑為2 cm及晶體中心位置距離結構散射片出光面為5 cm的情況下,水平位移靈敏度與垂直位移靈敏度皆可獲得小於2 μm 的位移靈敏度,將有助於儲存密度的提升,進而增加達到理想上儲存容量的可能性。此外,該結構散射片能夠經由設計以及複製取得,避免遺失導致資料無法取回之窘境,對於全像儲存以及全像資訊保密方面之研究將會有所助益。
Aimed for reduction of light pollution and energy saving, this thesis focused on how to keep light effectively concentrated, limited, and uniform illuminated at a target region. By the motive, we proposed a novel way with high temperature down-size sintering technology and large-area impressing technology to perform a surface-structured diffuser with high transmission efficiency of 89%, obvious beam shaping effect, controllable divergence angle, and specific light pattern of uniform intensity distribution.
Based on surface-structured diffuser, we proposed a novel concept of lighting module of street light, which was composed of LED array, TIR lens array, high performance SSD, and high reflectance reflecting cavity. We assessed the luminaire performance by Monte Carlo ray-tracing for the main types of street pole arrangements, which were Central type, Zigzag type, and Single-side type. In the cases of Central type, Zigzag type, and Single-side type, the optical efficiency of lighting module were respectively 87.8%, 87.8%, and 87.2%. For the condition of a mounting height of 10 m in the cases of Central type, Zigzag type, and Single-side type, they had the central illuminance of 20 lux, 17.5 lux, and 17.9 lux, respectively; the average illuminance of 19.2 lux, 17.2 lux, and 16.2 lux, respectively; the uniformity of 0.877, 0.633, and 0.806, respectively. When the area of illuminated region was 30 m × 14 m, the optical utilization factor in Central type, Zigzag type, and Single-side type were 81%, 78.8%, and 73.6%, respectively.
Expect for high performance LED lighting module of street light, we also proposed a novel concept for an optical-adjustable luminaire with LED SSL and an SSD with surface compensation by liquid. The index matching function is useful to adjust the surface structure of the SSD so that the light pattern is adjustable to enable the luminaire more flexible. According to simulation results, light pattern is able to have continuous variation with refractive index of 1.33 to 1.5, without sacrifice of the optical efficiency.
Besides, we proposed a new way with use of a phase plate with micro-lens array to increase the shifting selectivity of hologram and to achieve higher energy efficiency. The phase plate with micro-lens array was used as a beam modulator owns inherent advantage of improving energy efficiency. Compared with a general ground glass, the simulation showed that the surface undulated structure on the SSD could perform a nearly ideal random phase distribution and the corresponding experimental results of shifting selectivity shows that the larger shifting selectivity could be observed with the SSD rather than a ground glass. The best shifting selectivity in our experimental result was less than 2 μm in both horizontal and vertical directions under the circumstance that the crystal thickness was 1 cm, the diameter of illumination area of the SSD was 2 cm, and the distance between the crystal and the SSD was 5 cm. Higher shifting selectivity will be useful to perform the theoretical capacity of holographic optical storage with random phase encoding. Different from traditional ground glass, the SSD can be well designed and duplicated in mass production process. It would be effective in holographic storage as well as in holographic data encryption.
[1] T. A. Edison, “Improvement in electric lights,” US Patent No. 214,636 (1878).
[2] S. M. Sze, Semiconductor Devices : Physics and Technology, 258-267 (John Wiley & Sons, Inc., New York, 1985).
[3] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 1st ed., 592-609 (John Wiley & Sons, Inc., New York, 1991).
[4] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, New York, 2006).
[5] H. J. Round, “A note on carborundum,” Electrical World 49, 309 (1907).
[6] E. E. Loebner, “Subhistories of the light emitting diode,” IEEE Trans. Electron Devices ED-23, 675-699 (1976).
[7] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[8] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, and M. G. Craford, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[9] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/ GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
[10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353-355 (1986).
[11] Y. Koide, N. Itoh, K. Itoh, N. Sawaki, I. Akasaki, “Effect of AlN buffer layer on AlGaN/α-Al2O3 heteroepitaxial growth by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 27, 1156-1161 (1988).
[12] I. Akasaki, H. Amano, K. Hiramatsu, and N. Sawaki, “High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE,” Inst. Phys. Conf. Ser. 91, 633-636 (1988).
[13] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0<x≦0.4) films grown on sapphire substrate by MOVPE,” J. Cryst. Growth 98, 209-219 (1989).
[14] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28, L2112-L2114 (1989).
[15] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effets on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. 31, L139-L142 (1992).
[16] S. Nakamura, M. Senoh, and T. Mukai, “P-GaN/n-InGaN/n-GaN double-heterostructure blue-light-emitting diodes,” Jpn. J. Appl. Phys. 32, L8-L11 (1993).
[17] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light-emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
[18] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[19] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[20] S. Nakamura, T. Mukai, and N. Iwasa, “Light-emitting gallium nitride-based compound semiconductor device,” US Patent No. 5,578,839 (1996).
[21] Y. Shimizu, K. Sakano, Y. Noguchi, T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” US Patent No. 5,998,925 (1999).
[22] S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
[23] M. G. Craford, “LEDs for solid state lighting and other emerging applications : status, trends, and challenges,” Proc. SPIE 5941, 594101-1:10 (2005).
[24] 孫慶成,LED的效率極限與照明設計的極致,2009固態照明研討會,國立中央大學,中華民國九十八年。
[25] N. Narendran, N. Maliyagoda, A. Bierman, R. Pysar, and M. Overington, “Characterizing white LEDs for general illumination applications,” Proc. SPIE 3938, 240-248 (2000).
[26] A. Zukauskas, M. S. Shur, and R. Gaska, Introduction to Solid-State Lighting (John Wiley & Sons, New York, 2002).
[27] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
[28] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[29] F. Nguyen, B. Terao, and J. Laski, “Realizing LED illumination lighting applications,” Proc. SPIE 5941, 594105 (2005).
[30] Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products, by US Department of energy.
[31] D. Sun, “Challenges and opportunities for high power white LED development,” DOE SSL R&D Workshop (2012).
[32] Cree, Inc., http://www.cree.com/news-and-events/cree-news/press-releas es/ 2009/december/091201-186-lumens-per-watt.
[33] Cree, Inc., http://www.cree.com/news-and-events/cree-news/press-releas es/ 2011/may/110509-231-lumen-per-watt.
[34] J. Y. Tsao, Light emitting diodes (LEDs) for general illumination : an OIDA technology roadmap update 2002 (OIDA, Washington, D. C., 2002).
[35] X. S. Liu, A. Vedlitz, and L. Alston, “Regional news portrayals of global warming and climate change,” Environ. Sci. Policy 11, 379-393 (2008).
[36] International Energy Agency, Light’s labour’s lost : policies for energy- efficient lighting (OECD/IEA, Paris, 2006).
[37] 林憲德、趙又嬋,都是愛迪生惹的禍 : 光害,新自然主義有限公司,中華民國九十八年。
[38] P. Cinzano, F, Falchi, and C. D. Elvidge, “The first world atlas of the artificial night sky brightness,” Mon. Not. Roy. Astron. Soc. 328, 689-707 (2001).
[39] M. McColgan, “Light Pollution,” NLPIP Lighting Answers 7, 1-20 (2007).
[40] J. C. Stover, Optical Scattering : Measurement and Analysis (McGraw -Hill, New York, 1990).
[41] Entire Technology Co., Ltd., http://www.entire.com.tw/about1.html.
[42] Bayer MaterialScience AG, http://www.materialscience.bayer.com/.
[43] Luminit Co., http://www.luminitco.com/.
[44] RPC Photonics, Inc., http://www.rpcphotonics.com/.
[45] T. R. M. Sales, “Structured microlens arrays for beam shaping,” Opt. Eng. 42, 3084-3085 (2003).
[46] T. R. M. Sales, “Structured microlens arrays for beam shaping,” Proc. SPIE 5175, 109-120 (2003).
[47] T. R. M. Sales, “High-contrast screen with random microlens array,” US Patent No. 6,700,702 (2004).
[48] T. R. M. Sales, S. Chakmakjian, D. J. Schertler, and G. M. Morris, “LED illumination control and color mixing with engineered diffusersTM,” Proc. SPIE 5530, 133-140 (2004).
[49] V. N. Mahajan, Optical imaging and aberrations : part I. ray geometrical optics (SPIE press, Bellingham, 1998).
[50] S. Ulam, R. D. Richtmyer, and J. von Neumann, “Statistical methods in neutron diffusion,” Los Alamos Scientific Laboratory report LAMS-551 (1947).
[51] N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949).
[52] W. B. Joyce, R. Z. Bachrach, R. W. Dixon, and D. A. Sealer, “Geometrical properties of random particles and the extraction of photons from electroluminescent diodes,” J. Appl. Phys. 45, 2229-2253 (1974)
[53] D. Z. Y. Ting and T. C. McGill, “Monte Carlo simulation of light-emitting diode light-extraction characteristics,” Opt. Eng. 34, 3545- 3553 (1995).
[54] Breault Research Organization, Inc., http://www.breault.com/index.php.
[55] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[56] J. W. Goodman, Introduction to Fourier optics, 2nd ed. (McGraw-Hill, 1996).
[57] C. C. Sun, I. Moreno, S. H. Chung, W. T. Chien, C. T. Hsieh, and T. H. Yang, “Brightness management in a direct LED backlight for LCD TVs,” J. Soc. Inf. Disp. 16, 519-526 (2008).
[58] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
[59] X. H. Lee, C. C. Lin, Y. Y. Chang, H. X. Chen, and C. C. Sun, “Power management of direct-view LED backlight for liquid crystal display,” Opt. Laser Technol. 46, 142-144 (2013).
[60] Evonik Industries AG, http://corporate.evonik.com/en/Pages/default.aspx.
[61] F. Costa, L. Costa, and L. Gini, “Optical articles and sol-gel process for their manufacture,” World Intellectual Property Organization WIPO, WO 2004/083137 A1 (2004).
[62] The making of SAVOSIL®, Evonik Industries AG, http://www.savos il.com/product/savosil/en/products/making-of-savosil/pages/default.aspx.
[63] Regatech Co., http://www.regatech.com/e1.htm.
[64] X. H. Lee, J. L. Tsai, S. H. Ma, and C. C. Sun, "Surface-structured diffuser by iterative down-size molding with glass sintering technology," Opt. Express 20, 6135-6145 (2012).
[65] Z. Feng, Y. Luo, and Y. Han, “Design of LED freeform optical system for road lighting with high luminance/illuminance ratio,” Opt. Express 18, 22020-22031 (2010).
[66] J. W. Pan, S. H. Tu, W. S. Sun, C. M. Wang, and J. Y. Chang, “Integration of non-Lambertian LED and reflective optical element as efficient street lamp,” Opt. Express 18, A221-A230 (2010).
[67] J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik 121, 1761-1765 (2010).
[68] S. Magarill, “Skew-faceted elliptical reflector,” Opt. Lett. 36, 532-533 (2011).
[69] R. Mullner and A. Riener, “An energy efficient pedestrian aware smart street lighting system,” International Journal of Pervasive Computing and Communications 7, 147-161 (2011).
[70] S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716-A724 (2011).
[71] C. H. Jen, Y. Y. Chen, A. J. W. Whang, and M. J. Lu, “Non-axisymmetrical freeform design for short LED street lamp,” Proc. SPIE 8123, 812307 (2011).
[72] A. Haans and Y. A. W. de Kort, “Light distribution in dynamic street lighting: two experimental studies on its effects on perceived safety, prospect, concealment, and escape,” Journal of Environmental Psychology 32, 342-352 (2012).
[73] Y. C. Lo, K. T. Huang, X. H. Lee, and C. C. Sun, “Optical design of a butterfly lens for a street light based on a double-cluster LED,” Microelectron. Reliab. 52, 889-893 (2012).
[74] Illuminating Engineering Society of North America, The IESNA Lighting handbook : reference and application, 9th ed. (IESNA, New York, 2000).
[75] Cree XLamp XP-E LED, http://www.cree.com/led-components-and-modu les/products/xlamp /discrete-directional/xlamp-xpe.
[76] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[77] C. C. Sun, W. T. Chien, I. Moreno, C. T. Hsieh, M. C. Lin, S. L. Hsiao, and X. H. Lee, “Calculating model of light transmission efficiency of diffusers attached to a lighting cavity,” Opt. Express 18, 6137-6148 (2010).
[78] A. Pachamanov and D. Pachamanova, “Optimization of the light distribution of luminaries for tunnel and street lighting,” Eng. Optimiz. 40, 47-65 (2008).
[79] E. Hecht, Optics, 4th ed. (Addison-Wesley, San Francisco, 2002).
[80] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer-Verlag, New york, 2000).
[81] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[82] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971).
[83] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[84] F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
[85] L. Young, W. K. Y. Wong, M. L. W. Thewait, and W. D. Cornish, “Theory of formation of phase holograms in lithium niobate,” Appl. Phys. Lett. 24, 264-265 (1974).
[86] G. A. Alphonse, R. C. Alig, D. L. Staebler, and W. Philips, “Time-dependent characteristics of photo-induced space charge field and phase holograms in lithium niobate and other photorefractive materials,” RCA Rev. 36, 213 (1975).
[87] D. von der Linde and A. M. Glass, “Photorefractive effects for reversible holographic storage of information,” Appl. Phys. 8, 85-100 (1975).
[88] D. M. Kim, R. R. Shah, T. A. Rabson, and F. K. Tittel, “Nonlinear dynamic theory for photorefractive phase hologram formation,” Appl. Phys. Lett. 28, 338-340 (1976).
[89] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[90] J. Feinberg, D. Heiman, A. R. Tanguay, Jr., and R. W. Hellwarth, “Photorefractive effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51, 1297-1305 (1980).
[91] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications I: Fundamental Phenomena (Spring-Verlag, New York, 1988).
[92] P. Günter and J. P. Huignard, Photorefractive Materials and Their Applications II: Materials (Spring-Verlag, New York, 1989).
[93] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[94] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303- 1311 (1966).
[95] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[96] D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70-76 (1995).
[97] P. Asthana nd B. Finkelstein, “Superdense optical storage,” IEEE Spectrum 32, 25-31 (1995).
[98] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
[99] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471-1473 (1992).
[100] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[101] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[102] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[103] J. T. LaMacchia and D. L. White, “Coded multiple exposure holograms,” Appl. Opt. 7, 91-94 (1968).
[104] C. C. Sun, R. H. Tsou, W. C. Chang, J. Y. Chang, and M. W. Chang, “Random phase-coded multiplexing of hologram volumes using ground glass,” Opt. Quantum Electron. 28, 1551-1561 (1996).
[105] C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[106] C. C. Sun, W. C. Su, B. Wang, and A. E. T. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
[107] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[108] C. C. Sun, W. C. Su, Y. N. Lin, Y. OuYang, S. P. Yeh, and B. Wang, “Three dimensional shifting sensitivity of a volume hologram with spherical reference waves,” Opt. Mem. Neural Networks 8, 229-235 (1999).
[109] 蘇威佳,三維亂相編碼之體積全像及其應用,國立中央大學光電科學研究所博士論文,中華民國九十年。
[110] L. C. Tang, G. W. Hu, K. L. Russell, C. S. Chang, and C. C. Chang, “Optical encrypted holographic memory using triple random phase-encoded multiplexing in photorefractive LiNbO3:Fe crystal,” Proc. SPIE 4110, 270-276 (2000).
[111] C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phased-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[112] W. C. Su and C. H. Lin, “Enhancement of the angular selectivity in encrypted holographic memory,” Appl. Opt. 43, 2298-2304 (2004).
[113] W. C. Su and C. H. Lin, “Three-dimensional shifting selectivity of decryption phase mask in a double random phase encoding holographic memory,” Opt. Commun. 241, 29-41 (2004).
[114] C. C. Sun, C. Y. Hsu, S. H. Ma, and W. C. Su, “Rotation selectivity of random phase encoding in volume holograms,” Opt. Commun. 276, 62-66 (2007).
[115] S. H. Ma, X. H. Lee, T. C. Teng, Y. W. Yu, and C. C. Sun, “Enhanced rotational bragg selectivity by use of random phase encoding in volume holographic filter,” Appl. Opt. 46, 5430-5434 (2007).
[116] M. Z. He, Q. F. Tan, L. C. Cao, Q. S. He, and G. F. Jin, “Security enhanced optical encryption system by random phase key and permutation key,” Opt. Express 17, 22462-22473 (2009).
[117] J. H. Li, M. Z. He, T. X. Zheng, L. C. Cao, Q. S. He, and G. F. Jin, “Two-dimensional shift-orthogonal random-interleaving phase-code multiplexing for holographic data storage,” Opt. Commun. 284, 5562-5567 (2011).
[118] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).