跳到主要內容

簡易檢索 / 詳目顯示

研究生: 莊博豪
Po-Hao Chuang
論文名稱: C-頻段與Ka-頻段之積體化薄膜濾波器製作與覆晶封裝技術
Integrated Thin-film Filters in C-Band and Ka-Band Design and Flip Chip technology
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 92
語文別: 中文
論文頁數: 89
中文關鍵詞: 濾波器薄膜覆晶
外文關鍵詞: flip chip, thin-film, filter
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文中濾波器主要分為C-頻段與Ka-頻段兩大部分。在C-頻段中,首先我們設計了傳統型的柴比雪夫九階低通濾波器和二階的帶通濾波器,接著我們利用加入傳輸零點的想法,來設計低通、帶通濾波器,並利用這些加入傳輸零點的濾波器來與傳統型的濾波器做比較。在Ka-頻段中,首先我們設計了傳統型的步階式低通濾波器,和縮小型的低通濾波器,並以四分之ㄧ波長的設計方式來設計濾波器中衰減係數極點。在最後一部份,我們使用電鍍的方式來製作覆晶封裝技術中所需要的金凸塊,並將50Ω傳輸線和電感性傳輸線覆晶量測後,以模擬與量測結果來萃取金凸塊的等效電路模型。


    目錄 第一章 序論………………….…………………………………………..1 §1.1 研究動機……………………………………………………………1 §1.2 論文綱要……………………………………………………………2 第二章 濾波器設計原理與薄膜製作 §2.1 簡介…………………………………………………………………3 §2.2 集總式濾波器設計原理……………………………………………4 §2.2.1 濾波器種類介紹…………………………………………….4 §2.2.2 低通濾波器設計方法……………………………………….5 §2.2.3低通至帶通濾波器之刻度轉換……………………………..8 §2.3 阻抗與導納反轉器………………………………………………..10 §2.4 濾波器薄膜製程………..…………………………………………23 第三章5.2GHz濾波器設計與製作…………………………………….26 §3.1 低通共平面波導濾波器設計與製作……………………………26 §3.2 帶通共平面波導濾波器設計與製作……………………………30 §3.3 零點低通共平面波導濾波器設計與製作………………………34 §3.3.1 A type零點低通共平面波導濾波器模擬與量測………….34 §3.3.2 B type零點低通共平面波導濾波器模擬與量測………….38 §3.4 零點帶通共平面波導濾波器設計與製作………………………42 §3.5 結語………………………………………………………………..47 第四章Ka頻段濾波器設計與製作……………………………………50 §4.1 簡介………………………………………………………………..50 §4.2 步階式低通濾波器設計與製作…………………………………..51 §4.2.1 步階式低通濾波器設計原理……………………………...51 §4.2.2 步階式低通濾波器量測與模擬…………………………...53 §4.3具有止帶衰減極點之步階式低通濾波器設計與製作……………56 §4.3.1止帶衰減極點之設計……………………………………..56 §4.3.2具有止帶衰減極點之步階式低通濾波器模擬與量測…..58 §4.4縮小型低通濾波器設計……………………………………………61 §4.4.1縮小型低通濾波器設計原理………………………………61 §4.4.2縮小型低通濾波器量測與模擬…………………………….63 §4.4.3具有止帶衰減極點之縮小型低通濾波器模擬與量測…….65 §4.5結語…………………………………………………………………68 第五章 覆晶(Flip Chip)技術在高頻電路之應用……………………..70 §5.1 簡介………………………………………………………………..70 §5.2 凸塊接點製作……………………………………………………..72 §5.3 覆晶技術應用……………………………………………………..76 §5.4 結語………………………………………………………………..83 第六章 結論…………………………………………………………….85 參考文獻………………………………………………………………...86

    參考文獻
    [1] 書名: 微波工程, 原著: David M.Pozar, 譯者: 郭人財, 出版社: 高立圖書有限公司
    [2] 吳瑞峰, “氧化鋁基板上積體化被動元件及其微波電路設計與研製,”碩士論文,國立中央大學, 2002
    [3] Diels, W.; Vaesen, K.; Wambacq, P.; Donnay, S.; De Raedt, W.; Engels, M.; Bolsens, I.; “Single-Package Integration of RF Blocks for a 5GHz WLAN Application”Advanced Packaging, IEEE Transactions on [see also Components,Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on] , Volume: 24 , Issue: 3 , Aug. 2001 Pages:384 – 391
    [4] Yildirim, N.; Sen, O.A.; Sen, Y.; “Synthesis of cascaded N-tuplet filters” Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2001. TELSIKS 2001. 5th International Conference on , Volume: 1 , 19-21 Sept. 2001 Pages:153 - 162 vol.1
    [5] Sanghoon Shin; Snyder, R.V.; “At least N+1 finite transmission zeros using frequency-variant negative source-load coupling” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] , Volume: 13 , Issue: 3 , March 2003 Pages:117 – 119
    [6] Jokela, K.T.; “Narrow-Band Stripline or Microstrip Filters with Transmission Zeros at Real and Imaginary Frequencies ” Microwave Theory and Techniques, IEEE Transactions on , Volume: 28 , Issue: 6 , Jun 1980 Pages:542 – 547
    [7] Cameron, R. J.; “General coupling matrix synthesis methods for chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech., vol. 47,Apr. 1999.
    [8] Bell, H. C.; “Canonical asymmetric coupled-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, Sept. 1982.
    [9] Atia, A. E. and Williams, A. E. “Narrow-bandpass waveguide filters,”IEEE Trans. Microwave Theory Tech., vol. MTT-20, Sept. 1972.
    [10] Levy, R.; “Direct synthesis of Cascaded Quadruplet (CQ) filters,” IEEE Trans. Microwave Theory Tech., vol. 43, Dec. 1995.
    [11] Amari, S. ;“On the maximum number of finite transmission zeros of coupled resonator filters with a given topology,” IEEE Microwave Guided Wave Lett., vol. 9, Sept. 1999.
    [12] Levy, R. ;“Direct synthesis of folded symmetric resonator filters with
    source-load coupling,” IEEE Microwave Wireless Compon. Lett., vol.11, June 2001.
    [13] Amari, S. and Boremann, J. ;“Using frequency-dependent coupling to
    generate finite attenuation poles in direct-coupled resonator bandpass
    filters,” IEEE Microwave Guided Wave Lett., vol. 9, Oct. 1999.
    [14] Snyder, R.V. ;“Synthesis of filters with Frequency-Variant Couplings
    (FVC),” in Proc. IEEE Int. Microwave Symp. Workshop, May 2001.
    [15] Dobrowolski, J. ;Introduction to Computer Methods for Microwave Circuit Analysis and Design. Boston, MA: Artech House, 1991.
    [16] Lap Kun Yeung; Ke-Li Wu; “ A compact second-order LTCC bandpass filter with two finite transmission zeros”Microwave Theory and Techniques, IEEE Transactions on , Volume: 51 , Issue: 2 , Feb. 2003 Pages:337 – 341
    [17] 張振元, “共面波導帶通濾波器之設計,”碩士論文,國立台灣大學, 2002
    [18] Weller, T.M.; Katehi, L.P.; ” Miniature stub and filter designs using the microshield transmission line”Microwave Symposium Digest, 1995., IEEE MTT-S International , 16-20 May 1995 Pages:675 - 678 vol.2
    [19] Weller, T.M.; Katehi, L.P.B.;” A millimeter-wave micromachined lowpass filter using lumped elements”Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume: 2 , 17-21 June 1996
    Pages:631 - 634 vol.2
    [20] Hettak, K.; Delisle, G. and Boulmalf, M. ;“Simultaneous realization of millimeter-wave uniplanar shunt stubs and DC block,” in IEEE MTT-SInt. Microwave Symp. Dig., 1998, pp. 809–812.
    [21] Sharma, A. K. and Wang, H. ;“Experimental models of series and shuntelements in coplanar MMIC’s,” in IEEE MTT-S Int. Microwave Symp.Dig., 1992, pp. 1349–1352.
    [22] Arai, Y.; Sato, M.; Yamada, H.T.; Hamada, T.; Nagai, K.; Fujishiro, H.; “60-GHz flip-chip assembled MIC design considering chip-substrate effect”Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 , Dec. 1997 Pages:2261 – 2266;
    [23] Sakai, H.; Ota, Y.; Inoue, K.; Yoshida, T. ; Takahashi, K. ; Fujita, S. ;and Sagawa, M.; “A novel millimeter-wave IC on Si substrate using flip-chip bonding technology,” in IEEE MTT-S Dig., San Diego, CA, May 1994,pp. 1763–1766.
    [24] Baumann, G.; Richter, H.; Baumgartner, A.; Ferling, D.; Hollmann, D.; Muller, H.; Nechansky, H.and Schlechtweg, M. “51 GHz frontend with flip chip and wire bond interconnections from GaAs MMIC’s to a planar patch antenna,” in IEEE MTT-S Dig., Orlando, FL, May 1995, pp. 1639–1642.
    [25] Sturdivant, R.;“Reducing the effects of the mounting substrates on the performance of GaAs MMIC flip chips,” IEEE MTT-S Dig., San Diego, CA, May 1995, pp. 1591–1594.
    [26] Sanada, A.; Takehara, H.; Yamamoto, T.; Awai, I.;” λ/4 stepped-impedance resonator bandpass filters fabricated on coplanar waveguide”Microwave Symposium Digest, 2002 IEEE MTT-S International , Volume: 1 , 2-7 June 2002 Pages:385 – 388
    [27] Duo, X.; Li-Rong Zheng; Tenhunen, H.; Chen, L.; Zou, G.; Liu, J.;” Design and implementation of a 5GHz RF receiver front-end in LCP based system-on-package module with embedded chip technology”
    Electrical Performance of Electronic Packaging, 2003 , 27-29 Oct. 2003 Pages:51 – 54
    [28] Donnay, S.; Pieters, P.; Vaesen, K.; Diels, W.; Wambacq, P.; De Raedt, W.; Beyne, E.; Engels, M.; Bolsens, I.;” Chip-package codesign of a low-power 5-GHz RF front end”Proceedings of the IEEE , Volume: 88 , Issue: 10 , Oct. 2000 Pages:1583 - 1597

    QR CODE
    :::