跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曾繼欣
ZENG,JI-SIN
論文名稱: 以水熱法合成鎢摻雜二氧化釩奈米結構 於藍寶石基板
Hydrothermal synthesis of tungsten-doped vanadium dioxide nanostructures on sapphire
指導教授: 陳一塵
I-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 59
中文關鍵詞: 水熱法二氧化釩電學性質
外文關鍵詞: hydrothermal method, vanadium dioxide, electrical properties
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化釩 (vanadium dioxide, VO2) ,是種具相變性質的過渡金屬氧化物,因此當發生金屬絕緣體相轉變 (metal-insulator transformation, MIT) 的過程中會從絕緣體―單斜晶相 (monoclinic) 轉換成金屬態―金紅石相 (rutile) 。此時物理性質也會發生突變,如電阻產生2~5個數量級突變,同時伴隨著磁性、光學性質上的改變,並且因為相轉換溫度 (約68 °C) 接近室溫,使其成為重要的功能材料研究對象。
    本研究目的在直接利用水熱法於藍寶石基板上沉積出摻雜鎢之二氧化釩結構,並進行後退火處理,探討其微觀結構和結晶相並嘗試優化相轉換溫度 (電阻突變溫度) 。實驗結果顯示在前驅物比例 (五氧化二釩:草酸) 為3:5時能使反應後得到最佳的基板覆蓋率且避免雜相V3O7生成;於水熱法180 °C、持溫4小時的低溫短時間條件下即可獲得純相二氧化釩B相的奈米結構。
    另外退火處理後之未摻雜二氧化釩結構相轉換溫度約68 °C、電阻變化量約3個數量級,與文獻上提出的相轉換溫度一致;而摻雜了2 at% 鎢的二氧化釩結構之相轉換溫度則下降至53 °C,電阻變化量約1個數量級,提高摻雜量時相轉換溫度並無明顯下降,且其X光繞射圖之M相特徵峰也無位移現象。不同的是以相同實驗條件下合成之摻鎢二氧化釩粉末其X光繞射圖的M相特徵峰位移量卻隨摻雜量上升而增加 (可證明鎢離子取代了部分的釩離子) 。由此推測摻雜後的二氧化釩更傾向於均質成核而非異質成核,因此只有少部分之結構可以沉積於藍寶石基板表面。


    Vanadium dioxide (VO2) is a kind of transition metal oxide with phase change properties. Therefore, when metal-insulator transformation (MIT) occurs, the monoclinic VO2 will transform to the tetragonal rutile phase. At this time, the physical properties will also undergo mutations, such as 2 to 5 orders of magnitude mutations in resistance, accompanied by changes in magnetic and optical properties. Because the phase transition temperature (about 68 °C) of VO2 is close to room temperature, it has a great potential in the field of functional materials.
    The purpose of this research was to directly deposit W-doped vanadium dioxide on substrates by hydrothermal method, and performed post-annealing treatment. We explored its microstructure and crystalline phase, and tried to optimize the phase transition temperature (resistance mutation temperature) .
    The experimental results showed that when the precursor ratio (vanadium pentoxide: oxalic acid) was 3:5, the best substrate coverage could be obtained after the reaction and the formation of impurity V3O7 could be avoided. The pure vanadium dioxide B phase nanostructure could be successfully prepared through hydrothermal method at 180 °C for 4 hr.
    In addition, the Tc of the undoped VO2 structure was about 68 °C, and the resistance dropped by about 3 orders, which was roughly the same as the commonly known Tc of undoped VO2. When W content increased to 2 at%, the lowest Tc was 53 °C. The electrical resistance change was one order. The Tc did not decrease significantly when the doping amount was increased, and the M-phase characteristic peak of the X-ray diffraction pattern was also not shifted. However, the M phase characteristic peak displacement of the X-ray diffraction pattern of the tungsten-doped vanadium dioxide powder synthesized under the same experimental conditions increased with the increase of the doping amount. It was speculated that the doped vanadium dioxide tended to form homogeneous nucleation rather than heterogeneous nucleation, so only a small part of the structure could be deposited on the surface of the sapphire substrate.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 第二章 相關文獻回顧與整理 2 2-1二氧化釩之結構、特性及應用 2 2-1-1二氧化釩之晶體結構 2 2-1-2二氧化釩之相轉變性質 5 2-1-3二氧化釩之光學及電學特性 6 2-1-4二氧化釩的相關應用 8 2-2摻雜對二氧化釩結構物理性質之影響 9 2-2-1相轉換溫度 9 2-2-2光學性質12 2-2-3電學性質 16 2-3以水熱法製備二氧化釩結構 17 2-3-1水熱法之原理概述 17 2-3-2水熱法的優點 18 2-3-3退火處理 18 第三章 實驗方法與流程 21 3-1實驗流程 21 3-2實驗材料及設備 21 3-3實驗步驟 22 第四章 結果與討論 24 4-1水熱參數對鎢摻雜二氧化釩結構合成之影響 24 4-1-1V2O5/H2C2O4·2H2O比例及溶液濃度對摻鎢二氧化釩結構合成之影響 24 4-1-2反應時間及溫度對摻鎢二氧化釩結構合成之影響 28 4-2 退火處理後鎢摻雜二氧化釩結構性質分析 32 4-2-1不同退火溫度下之結晶相與微觀結構 32 4-2-2電學性質 36 第五章 結論 42 第六章 參考文獻 43

    1. Li, M., et al., Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. 2017. 13(36): p. 1701147.
    2. Katzke, H., P. Tolédano, and W.J.P.R.B. Depmeier, Theory of morphotropic transformations in vanadium oxides. 2003. 68(2): p. 024109.
    3. Leroux, C., G. Nihoul, and G.J.P.r.B. Van Tendeloo, From VO 2 (B) to VO 2 (R): Theoretical structures of VO 2 polymorphs and in situ electron microscopy. 1998. 57(9): p. 5111.
    4. Oka, Y., T. Yao, and N.J.J.o.S.S.C. Yamamoto, Powder X-ray crystal structure of VO2 (A). 1990. 86(1): p. 116-124.
    5. Yang, Z., C. Ko, and S.J.A.R.o.M.R. Ramanathan, Oxide electronics utilizing ultrafast metal-insulator transitions. 2011. 41: p. 337-367.
    6. Goodenough, J.B.J.J.o.S.S.C., The two components of the crystallographic transition in VO2. 1971. 3(4): p. 490-500.
    7. Zhang, J., et al., Self-assembling VO2 nanonet with high switching performance at wafer-scale. 2015. 27(21): p. 7419-7424.
    8. Ji, C., et al., High thermochromic performance of Fe/Mg co-doped VO 2 thin films for smart window applications. 2018. 6(24): p. 6502-6509.
    9. Dai, L., et al., F-doped VO 2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. 2013. 15(28): p. 11723-11729.
    10. Wang, N., et al., Mg/W-codoped vanadium dioxide thin films with enhanced visible transmittance and low phase transition temperature. 2015. 3(26): p. 6771-6777.
    11. Dietrich, M.K., et al., Optimizing thermochromic VO2 by co-doping with W and Sr for smart window applications. 2017. 110(14): p. 141907.
    12. Song, L., et al., Preparation and thermochromic properties of Ce-doped VO2 films. 2013. 48(6): p. 2268-2271.
    13. Gu, D., et al., Influence of Gadolinium-doping on the microstructures and phase transition characteristics of VO2 thin films. 2017. 705: p. 64-69.
    14. Wang, N., et al., Terbium-doped VO2 thin films: reduced phase transition temperature and largely enhanced luminous transmittance. 2016. 32(3): p. 759-764.
    15. Wang, N., et al., Effect of lanthanum doping on modulating the thermochromic properties of VO 2 thin films. 2016. 6(54): p. 48455-48461.
    16. Tan, X., et al., Unraveling metal-insulator transition mechanism of VO 2 triggered by tungsten doping. 2012. 2(1): p. 1-6.
    17. Faucheu, J., E. Bourgeat‐Lami, and V.J.A.E.M. Prevot, A Review of Vanadium Dioxide as an Actor of Nanothermochromism: Challenges and Perspectives for Polymer Nanocomposites. 2019. 21(2): p. 1800438.
    18. Lu, S., L. Hou, and F.J.T.s.f. Gan, Surface analysis and phase transition of gel-derived VO2 thin films. 1999. 353(1-2): p. 40-44.
    19. Xu, J., et al., Effect of Zr Doping on the Magnetic and Phase Transition Properties of VO2 Powder. 2019. 9(1): p. 113.
    20. Chen, S., et al., Unraveling mechanism on reducing thermal hysteresis width of VO2 by Ti doping: a joint experimental and theoretical study. 2014. 118(33): p. 18938-18944.
    21. He, X., et al., Orbital change manipulation metal–insulator transition temperature in W-doped VO 2. 2015. 17(17): p. 11638-11646.
    22. Lu, L., et al., Effect of Fe doping on thermochromic properties of VO 2 films. 2018. 29(7): p. 5501-5508.
    23. Qu, Z., et al., Surface and interface engineering for VO2 coatings with excellent optical performance: From theory to practice. 2019. 109: p. 195-212.
    24. Wang, S., et al., Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. 2016. 81: p. 1-54.
    25. Zhou, J., et al., Mg-doped VO 2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal–insulator transition temperature. 2013. 15(20): p. 7505-7511.
    26. Chen, S., et al., The visible transmittance and solar modulation ability of VO 2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study. 2013. 15(40): p. 17537-17543.
    27. Shen, N., et al., The synthesis and performance of Zr-doped and W–Zr-codoped VO 2 nanoparticles and derived flexible foils. 2014. 2(36): p. 15087-15093.
    28. Burkhardt, W., et al., Tungsten and fluorine co-doping of VO2 films. 2002. 402(1-2): p. 226-231.
    29. Rajeswaran, B. and A.M.J.A.A. Umarji, Effect of W addition on the electrical switching of VO2 thin films. 2016. 6(3): p. 035215.
    30. Mai, L., et al., Electrical property of Mo-doped VO2 nanowire array film by melting− quenching sol− gel method. 2006. 110(39): p. 19083-19086.
    31. Pinceloup, P., et al., Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders. 1999. 19(6-7): p. 973-977.
    32. Théobald, F.J.J.o.t.L.C.M., Étude hydrothermale du système VO2-VO2, 5-H2O. 1977. 53(1): p. 55-71.
    33. Cao, C., Y. Gao, and H.J.T.J.o.P.C.C. Luo, Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. 2008. 112(48): p. 18810-18814.
    34. Ji, S., et al., Preparation of high performance pure single phase VO2 nanopowder by hydrothermally reducing the V2O5 gel. 2011. 95(12): p. 3520-3526.
    35. Wang, N., et al., Single‐Crystalline W‐Doped VO2 Nanobeams with Highly Reversible Electrical and Plasmonic Responses Near Room Temperature. 2016. 3(15): p. 1600164.
    36. Popuri, S.R., et al., Rapid hydrothermal synthesis of VO2 (B) and its conversion to thermochromic VO2 (M1). 2013. 52(9): p. 4780-4785.
    37. Pavasupree, S., et al., Synthesis and characterization of vanadium oxides nanorods. 2005. 178(6): p. 2152-2158.
    38. Romanyuk, A., et al., Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy. 2007. 91(19): p. 1831-1835.

    QR CODE
    :::