跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫梅珊
Mei-San Sun
論文名稱: 可分解友矩陣之研究
A Study on Reducible Companion Matrices
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 94
語文別: 英文
論文頁數: 29
中文關鍵詞: 可分解之友矩陣
外文關鍵詞: reducible companion matrices, numerical range
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討「可分解友矩陣」的一些性質。我們證明若一個非么正友矩陣 A 可分解成A1 ⊕ A2,則 且
    。令*1 1 rank( ) 1 kI −AA =* =
    2 2 rank( ) 1 n k I AA − − { : rank( * )=1 and | | , ( )} n n Sα ≡ A∈M I−AA λ =α ∀λ ∈σ A
    ,則相當於1 是屬於A k Sα 且2 是屬於A 1/
    n k S α
    − 。亦證明每一個屬於n Sα
    集合內的矩陣均具有循環、不可分解、且其數值域之邊界為一
    可微曲線。並證明下列敘述互為等價:(a) ;(b)
    ;(c)
    1 W(A)=W(A)
    1 1) n 2 n1 W(J ) W(A − ⊆ W(A ) W(J ) − ⊆ 。


    In this thesis, we study some properties of reducible companion matrices. We first prove that if a nonunitary reducible companion matrix A is unitarily equivalent to the direct sum A_1oplus A_2 on mathbb{C}^koplusmathbb{C}^{n-k} with sigma(A_1)={aom_n^{j_1},cdots,aom_n^{j_k}} and sigma(A_2)={(1/ ar{a})om_n^{j_{k+1}},cdots,(1/ ar{a})om_n^{j_n}},where |a|>1 and om_n denotes the nth primitive root of 1,then rank(I_k-A^{*}_1A_1)=rank(I_{n-k}-A^{*}_2A_2)=1. We denote mathcal{S}^{al}_nequiv{Ain M_n:rank(I_n-A^{*}A)=1 and |la|=al,forall: lainsigma(A)}, thus A_1 is in mathcal{S}^{al}_k and A_2 is in mathcal{S}^{1/al}_{n-k}. Next, we prove that every mathcal{S}^{al}_n-matrix is irreducible, cyclic, and the boundary of its numerical range is a differentiable curve.
    Furthermore, we show that the following statements are equivalent:
    (a) W(A)=W(A_1); (b)W(J_{n-1})subseteq W(A_1); (c)W(A_2)subseteq W(J_{n-1}).

    1. Introduction . . . . . . . . . . . . . . . . . . . . . . .1 2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Basic Properties of Numerical Range . . . . . . . . . . .3 2.2 Companion Matrices . . . . . . . . 4 3. The S^alpha_n Matrices . . . . . . .6 4. Reducible Companion Matrices . . . . . . .21 References . . . . . . .29

    [1] H. Bercovici,(1988). Operator theory and arithmetic in H1, Amer. Math. Soc.,Providence.
    [2] H.-L. Gau and P. Y. Wu, Numerical range of S(Á), Linear and Multilinear Al-
    gebra, 45 (1998), 49-73.
    [3] H.-L. Gau and P. Y.Wu, Lucas'' theorem re¯ned, Linear and Multilinear Algebra,45 (1999), 359-373.
    [4] H.-L. Gau and P. Y. Wu, Condition for the numerical range to contain an elliptic disc, Linear Algebra and its Appl., 364 (2003), 213-222.
    [5] H.-L. Gau and P. Y. Wu, Companion matrices: reducibility, numerical ranges
    and similarity to contractions, Linear Algebra and its Appl., 383 (2004), 127-142.
    [6] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press,
    Cambridge, 1985.
    [7] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
    Press, 1991.
    [8] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The numerical range of 3 £ 3
    matrices, Linear Algebra and its Appl., 252 (1997), 115-139.
    [9] B. Mirman, Numerical ranges and Poncelet curves, Linear Algebra and its Appl.,281 (1998), 59-85.
    [10] P. Y. Wu, Numerical ranges of Hilbert space operators, preprint.

    QR CODE
    :::