| 研究生: |
王騰輝 Teng-Hui Wang |
|---|---|
| 論文名稱: |
電場排列電極材料於高能鋰離子電池之研究 Using electric field arrange electrode materials for lithium ion batteries |
| 指導教授: |
諸柏仁
Peter Po-Jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 尖晶石 、LTO 、Li4Ti5O12 、電場誘導 |
| 外文關鍵詞: | Spinel, LTO, Li4Ti5O12, Electric field induction |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著3C產品的使用以及電動車的發展,下一代鋰離子電池需要高的能量密度以及高的功率密度,新的正極材料開發以及負極材料的包覆是近幾年來可以增加能量密度的方式。製造低曲折率(Tortuosity)、高孔洞性(Pores)、高電解液滲透率(Permeability)、低阻抗值(Impedance)的極片將是下一代鋰離子電池開發高能量密度以及高功率密度的新方向。
在此篇研究中,使用電場施加極片的方式來製造出低曲折率的極片。當鋰離子在極片中移動的路徑減小,則鋰離子移動的速度增加,電阻抗就會降低,這是一種可以提升功率密度又不會降低能量密度的做法。本研究使用穩定的尖晶石(Spinel)結構鋰鈦氧(Li4Ti5O12 [LTO])來做活性材料,並使用外加電場可以排列無機物的概念誘導陰極漿料(LTO、導電碳黑[Super-P]、黏著劑[PVdF])排列。由表面AFM、表面SEM、還有斷面SEM結果可以表明電極材料形成孔隙結構、低的曲折率、以及高的孔洞半徑。由離子導電度測試可以發現導電度有增加(由1.32×10-3 S cm-1 提升到4.45×10-3 S cm-1 ),交流阻抗測試可以發現電荷轉移阻抗(Charge transfer Resistant [Rct])有降低的情形(由 164.0Ω 降低到 80.1Ω ),這些數據可以表明使用電場施加的極片是可以提升電解液的穿透率以及降低極片的阻抗值。
最後,以不同電壓範圍以及不同速率充放電測試並且使用拉格圖(Ragone Plot)來找能量密度以及功率密度的關係圖譜。發現到經過電場施加的極片可以有效提升能量密度以及功率密度。功率密度從545.3增加至660.4 W kg-1,而能量密度從57.1增加至105.3 Wh kg-1。而高的孔隙結構也可以增加極片的比電容數值(specific capacity)而展現擬電容器(Pseudocapacitance)的現象。
New materials are being developed for next generation of lithium battery with higher energy and power density. Making low tortuosity and more porosity electrode has the potential to deliver high permeability of electrolytes and lower ion transport resistance. These features are essential to raise the power and energy density for next generation lithium ion batteries.
In present work, we report a novel approach by architecting lower tortuosity electrode structure with the use of electric field poling technique. The straightforward ion transfer path established fluent electrolyte permeation and faster ion transport with the voids in electrode, and maintains high power density without sacrificing energy density. This approach is demonstrated with the stable spinel structure Li4Ti5O12 (LTO) as an active material. The external electric force induced instantaneous dipole interaction which served to arrange the anode components (carbon black, binder) containing LTO with preferentially ordered alignment. Surface AFM, surface SEM and cross-section SEM results shows the electrode developed a pore structure with lower degree of tortuosity, and larger pore size. Ion conductivity is found to be increased (from 1.32×10-3 to 4.45×10-3 S/cm) and AC-impedance analysis shows the Rct, is reduced (from 164.0 to 80.1Ω). This confirms that E-F poling has developed benign electrode pore structure for better electrolyte permeation which shows lower ion transport resistance.
Finally, different voltage range and variable charge-discharge rate test revealed the relationship of power and energy density with Ragone Plot which suggested that the electric field-induced inorganic alignment is able to elevated both power and energy densities. On average, power density is increased from 545.3 to 660.4 W/kg, and energy density from 57.1 to 105.3 Wh/kg. The larger pore structure also allows for more complete access to active electrode materials, thus improves the specific capacitance, as well.
1. Cole, S., et al. SWOT analysis of utility side energy storage technologies. in Proceedings of the 5th WSEAS/IASME International Conference on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain. 2005.
2. 鄧名傑 and 陳錦明, 超級電池超級能耐. 專題報導 科學發展 2015年10月 514期, 2015.
3. renyu888666, Research progress of electric vehicle power battery technology. https://steemit.com/thanks/@renyu888666/research-progress-of-electric-vehicle-power-battery-technology, 2018.
4. Dinger, A., et al., Batteries for electric cars: Challenges, opportunities, and the outlook to 2020. The Boston Consulting Group, 2010. 7: p. 2017.
5. 電動產業的世界-電動車電池管理系統及測試 (轉載). http://blog.xuite.net/joh3622/johnason/112606366-%E9%9B%BB%E5%8B%95%E8%BB%8A%E9%9B%BB%E6%B1%A0%E7%AE%A1%E7%90%86%E7%B3%BB%E7%B5%B1%E5%8F%8A%E6%B8%AC%E8%A9%A6+%28%E8%BD%89%E8%BC%89%29, 2011.
6. Harris, S.J. Lithium Battery Research-Li Ion Battery Aging, Degradation, and Failure-Tortuosity in Li-ion battery porous electrodes. http://lithiumbatteryresearch.com/Tortuosity.php 2017.
7. Wei, L., et al., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Scientific Reports, 2016. 6: p. 19583.
8. Lee, M.-J., et al., Low-Temperature Carbon Coating of Nanosized Li1. 015Al0. 06Mn1. 925O4 and High-Density Electrode for High-Power Li-Ion Batteries. Nano Letters, 2017. 17(6): p. 3744-3751.
9. Tian, Y., et al., Hetero-assembly of a Li4Ti5O12 nanosheet and multi-walled carbon nanotube nanocomposite for high-performance lithium and sodium ion batteries. RSC Advances, 2017. 7(6): p. 3293-3301.
10. Su, X., et al., High power lithium-ion battery based on a LiMn 2 O 4 nanorod cathode and a carbon-coated Li 4 Ti 5 O 12 nanowire anode. RSC Advances, 2016. 6(109): p. 107355-107363.
11. 史楠楠, et al., N摻雜C包覆Li4Ti5O12鋰離子電池負極材料的製備與性能. 高等學校化學學報, 2015(2015年 05): p. 981-988.
12. Hulsure, N., High energy and capacity cathode material for li ion battries. https://www.slideshare.net/biradarnatraj/high-energy-and-capacity-cathode-material-for-li-ion-battries, 2014.
13. Luu, K., Understanding of thermal stability of lithium ion batteries. https://www.slideshare.net/khuelv/understanding-of-thermal-stability-of-lithium-ion-batteries, 2015.
14. Guohua, L., et al., The Spinel Phases LiM y Mn2− y O 4 (M= Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1996. 143(1): p. 178-182.
15. Kang, B. and G. Ceder, Battery materials for ultrafast charging and discharging. Nature, 2009. 458(7235): p. 190.
16. Wolfenstine, J. and J. Allen, Electrical conductivity and charge compensation in Ta doped Li4Ti5O12. Journal of Power Sources, 2008. 180(1): p. 582-585.
17. Yi, T.-F., et al., Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method. Journal of The Electrochemical Society, 2011. 158(3): p. A266-A274.
18. Li, F., et al., Sb doped Li4Ti5O12 hollow spheres with enhanced lithium storage capability. RSC Advances, 2016. 6(32): p. 26902-26907.
19. Sun, Y.K., et al., Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials. Journal of Power Sources, 2004. 125(2): p. 242-245.
20. Kajiyama, A., et al., 高出力Li4Ti5O12の粉末および電池特性—Relationship between Battery and Powder properties for Li4Ti5O12 fin particle. THE 52ND BATTERY SYMPOSIUM IN JAPAN, 2011. 2C05: p. 200.
21. Lee, H.-W., et al., Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Letters, 2010. 10(10): p. 3852-3856.
22. Hosono, E., et al., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano letters, 2009. 9(3): p. 1045-1051.
23. Liu, J., et al., Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Letters, 2014. 14(5): p. 2597-2603.
24. Jiang, Y.-M., et al., Li4Ti5O12/TiO2 Hollow Spheres Composed Nanoflakes with Preferentially Exposed Li4Ti5O12 (011) Facets for High-Rate Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(22): p. 19791-19796.
25. Liu, Y. and Y. Yang, Recent progress of TiO 2-based anodes for Li ion batteries. Journal of Nanomaterials, 2016. 2016: p. 2.
26. Kim, J.H., et al., A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. International Journal of Hydrogen Energy, 2016. 41(31): p. 13549-13556.
27. Sander, J., et al., High-performance battery electrodes via magnetic templating. Nature Energy, 2016. 1(8): p. 16099.
28. Ferg, E., et al., Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society, 1994. 141(11): p. L147-L150.
29. Yi, T.-F., S.-Y. Yang, and Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(11): p. 5750-5777.
30. Murphy, D., et al., Ternary LixTiO2 phases from insertion reactions. Solid State Ionics, 1983. 9: p. 413-417.
31. Plitz, I., et al., The design of alternative nonaqueous high power chemistries. Applied Physics A, 2005. 82(4): p. 615-626.
32. Khairy, M., K. Faisal, and M.A. Mousa, High-performance hybrid supercapacitor based on pure and doped Li4Ti5O12 and graphene. Journal of Solid State Electrochemistry, 2016. 21(3): p. 873-882.
33. Fan, Q., et al., Activated-Nitrogen-Doped Graphene-Based Aerogel Composites as Cathode Materials for High Energy Density Lithium-Ion Supercapacitor. Journal of The Electrochemical Society, 2016. 163(8): p. A1736-A1742.
34. Sun, Y.-K., et al., Synthesis and electrochemical characterization of spinel Li [Li (1− x)/3CrxTi (5− 2x)/3] O4 anode materials. Journal of power sources, 2004. 125(2): p. 242-245.
35. Wang, L., et al., Understanding the Effect of Preparative Approaches in the Formation of “Flower-like” Li4Ti5O12—Multiwalled Carbon Nanotube Composite Motifs with Performance as High-Rate Anode Materials for Li-Ion Battery Applications. Journal of The Electrochemical Society, 2017. 164(2): p. A524-A534.
36. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8.
37. Chen, C., et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy & Environmental Science, 2017. 10(2): p. 538-545.
38. Snook, G.A., P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011. 196(1): p. 1-12.
39. Rozynek, Z., et al., Dipolar ordering of clay particles in various carrier fluids. 2012.
40. Andy, H., Technology Articles-BET surface area, BJH pore size distribution, Gas Pycnometer true density_Adsorption Isotherm. http://particlescies.blogspot.com/2013/07/adsorption-isotherm.html, 2013.
41. Ebner, M., et al. Tortuosity Anisotropy in Lithium-Ion Battery Electrodes Studied by Synchrotron X-ray Tomography. in Meeting Abstracts. 2013. The Electrochemical Society.