跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃至瑋
Chih-Wei Huang
論文名稱: 氧化矽擔載銅觸媒應用於甲醇部分氧化
Production of hydrogen via partial oxidation of methanol over Cu/SiO2 catalysts
指導教授: 張奉文
Feg-Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 111
中文關鍵詞: 銅觸媒甲醇部分氧化反應氫氣
外文關鍵詞: hydrogen, partial oxidation of methanol, depos
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以二氧化矽為擔體,利用沉澱固著法製備成二氧化矽擔載銅觸媒,目的在發展甲醇部分氧化反應(CH3OH + 1/2O2 → 2H2 + CO2)產製氫氣的程序,並以不同銅載量及煅燒溫度等變因深入探討,同時利用感應耦合電漿質譜分析儀(ICP-MS)、熱重分析儀(TGA)、程式升溫還原(TPR)、N2O 分解吸附(dissociative adsorption of nitrous oxide)、X 射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、X 射線光電子分析儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。從化性結果分析,8.7wt% Cu/SiO2 觸媒催化最好,具有高氫氣選擇率和低一氧化碳選擇率,從N2O 分解吸附數據發現,銅粒徑隨著銅金屬載量提高而變大,從1.3nm 增加到3.4nm。TPR 的分析結果發現,氧化銅的還原峰隨著煅燒溫度增加往低溫偏移,經過煅燒程序後銅金屬分散度變大及吸附在擔體上的銅粒子接觸面積變小使擔體效應變小,因此造成Cu/SiO2 觸媒較容易還原;由XPS 的結果中發現,在甲醇部分氧化反應中,銅觸媒中Cu0 金屬銅是反應的活性物種,Cu2+則對甲醇部分氧化反應沒有活性,但是Cu/SiO2 觸媒的擔體二氧化矽具有高比表面積、熱穩定性及高催化活性等優點。經過活性測試後發現,Cu/SiO2 觸媒的活性與金屬銅的表面積成線性關係。當金屬銅的表面積越大時,氫氣選擇率越高;另外進料中氧氣與甲醇的比例也是影響反應的一個因素,當O2/CH3OH = 0.3 時,一氧化碳的產量較低,當增加反應溫度時,甲醇轉化率與氫氣選擇率都會同時增加。反應路徑由連續的甲醇部分氧化轉變成甲醇直接分解與甲醇蒸汽重組反應構成,使一氧化碳選擇率隨反應溫度提高而增加。Cu/SiO2 觸媒擁有高甲醇轉化率與氫氣轉擇率,但是Cu/SiO2 觸媒的一氧化碳選
    擇率相對比貴重金屬觸媒的一氧化碳選擇率高,未來仍須進行Cu/SiO2 觸媒改質,以降低一氧化碳選擇率。


    In this work silica-support copper catalysts were investigated for partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) to produce hydrogen. Cu/SiO2 catalysts prepared by deposition-precipitation method with different loadings were studied in detail. The structural
    characteristics of Cu/SiO2 were analysed by ICP-MS, TGA, TPR, N2O,XRD, SEM, TEM, and XPS. This catalysts show high activity for POM.The kinetic results show that the catalyst with 8.7wt%Cu/SiO2 exhibits the highest H2 selectivity and lowest CO selectivity than other catalysts.N2O adsorption chemisorption was used to monitor the surface area and particle size. The size of the copper particles increases from 1.3 nm to 3.4
    nm with increasing loadings. TPR measurements revealed that the reduction temperature of CuO shifts to the lower temperature with increase in the calcination temperature. The position of TPR peak shifts to the lower temperature suggesting the reducibility of CuO was promoted;XPS analyses demonstrated that Cu0 in catalysts is an active specie, but Cu2+ is not during the POM reaction. The activity of the catalyst is
    linearly dependent on the metallic copper surface area. All the results conclude that silica-support copper catalysts have highly copper dispersion and metallic copper surface area. The Cu/SiO2 catalysts display great activity for the conversion of methanol to produce hydrogen.

    目錄………………………………………………………………………I 圖索引……………………………………………………………………V 表索引…………………………………………………………………IX 第一章 緒論…………………………………………………1 1.1 前言……………………………………………………………1 1.2 綠色能源–氫能源發展前景…………………………………...2 1.3 氫能源技術開發及應用………………………………………...3 1.4 燃料電池原理………………..……..…………………………...4 1.5 甲醇製氫………………………………………………………...6 1.6 銅觸媒…………………………………………………………...7 1.7 研究內容與論文架構…………………………………………...8 第二章 文獻回顧………………………………………….10 2.1 銅觸媒的發展 ……………………………………………..10 2.2 沉澱固著法製備銅觸媒……………………………………….11 2.3 煅燒與還原程序……………………………………………….13 2.3-1 煅燒程序…………………………………………………..13 2.3-2 還原程序…………………………………………………..14 2.4 擔體效應……………………………………………………….15 2.5 銅觸媒的活性位置…………………………………………….15 2.6 銅觸媒在甲醇產製氫氧的應用….……………………….17 第三章 實驗方法與裝置…………………………..……….19 3.1 銅觸媒的製備…………………………………………….19 3.2 銅觸媒的鑑定分析………………………………………….20 3.2-1 感應耦合電漿質譜儀(ICP-MS)分析………………….….22 3.2-2 熱重分析(TGA)………………………………………….23 3.2-3 程式升溫還原(TPR)…………………………….……….23 3.2-4 銅金屬表面積的量測…………………………………….27 3.2-5 X射線繞射分析(XRD)………………………….……….29 3.2-6 穿透式電子顯微鏡(TEM)……………………………….30 3.2-7 掃描式電子顯微鏡分析(SEM)………………….………32 3.2-8 X射線光電子分析(XPS)……………………….………..34 3.3 觸媒活性測試—甲醇部分氧化反應…………….………….39 3.4 實驗流程與操作變數…………………………….………….41 3.5 數據的計算與實例…………………………………………….41 3.5-1 銅觸媒理論載量的定義與計算……………………………41 3.5-2 轉化率的定義與計算……………………….……………43 3.5-3 選擇率的定義與計算……………………….……………48 3.6 藥品、氣體及儀器設備……………………………………….50 3.6-1 藥品…………………………………………………………50 3.6-2 氣體…………………………………………………………50 3.6-3 儀器設備………………………………….………………51 第四章 結果與討論……………………………………...…53 4.1 物性分析………………………………………….………….53 4.1-1 製備沉澱時間對銅載量的影響…………………..………..53 4.1-2 煅燒條件的選擇…………………………………….……54 4.1-3 程式升溫還原分析(TPR)…………………………………57 4.1-4 觸媒銅金屬表面積測定……………..……………………62 4.1-5 X 射線繞射分析(XRD)……………………..……………67 4.1-6 穿透式電子顯微鏡分析(TEM)………………………….69 4.1-7 掃描式電子顯微鏡(SEM)……………………………….72 4-1-8 X 射線光電子分析(XPS)……….……………………….74 4.2 化性分析…………………………………………….……….78 4.2-1 銅載量對觸媒活性的影響……………………….………82 4.2-2 煅燒溫度對觸媒活性的影響………………………………87 4.2-3 進料比例對觸媒活性的影響……………………………..92 4.2-4 反應溫度對觸媒活性的影響………………………….…95 4.2-5 Cu/SiO2 觸媒與文獻上甲醇產氫之分析結果比較............101 第五章  結論……………………………………………………104 參考文獻……………………………………………………107

    Alejo, L., Lago, R, Pena, M. A. and Fierro, J. L. G., “Partial oxidation of
    methanol to produce hydrogen over Cu-Zn based catalysts”, Appl. Catal.
    A, 162, 281 (1997).
    Agrell, J., G. Germani, S. G. Jaras and M. Boutonnet, “ Production of
    hydrogen by partial oxidation of methanol over ZnO-cupported palladium
    catalysts prepared by microemulsion technique”, Appl. Cata l. A, 242,
    233 (2003a).
    Agrell, J., M. Boutonnet, and J. L. G. Fierro, “ Production of hydrogen
    from methanol over binary Cu/ZnO catalysts :Part II catalytic activity and
    reaction pathways”, Appl. Catal. A, 253, 213 (2003b).
    Agrell, J., K. Hasselbo, K. Jansson, G. Sven and J. M. Boutonnet,
    “ Production of hydrogen by partial oxidation of methanol over Cu/ZnO
    catalysts prepared by microemulsion technique”, Appl. Catal. A, 211, 239
    (2001).
    Batyrev, E.D., J.C. van den Heuvel, J. Beckers, W.P.A. Jansen and H.L.
    Castricum, “The effect of the reduction temperature on the structure of
    Cu/ZnO/SiO2 catalysts for methanol synthesis”, J. Catal., 229, 136
    (2005).
    Bond, G. C., and S. N. Namijo, “An improved procedure for estimating
    the metal surface area of supported copper catalysts” , J. Catal., 118, 507
    (1989).
    Clement, M., Y. Zhang, D.S. Brands, E.K. Poels, and A. Bliek, Stud. Surf.
    Sci. Catal.,130, 2123 (2000).
    Chang, H. F., M. A. Saleque, W. S. Hsu and W. Lin, “Characterization
    and dehydrogenation activity of Cu/Al2O3 catalysts prepared by
    electroless plating technique” J. Mol. Catal. 109, 249 (1996).
    Cubeiro, M. L. and J. L. G. Fierro, “Partial oxidation of methanol over
    supported palladium catalysts” Appl. Catal. A, 168, 307 (1998).
    Chen, H. W., J. M. White, and J. G. Ekerdt, “Electronic effect of supports
    on copper catalysts” , J. Catal., 99, 293 (1986).
    Chen, G., Q. Yuan, H. Li., and S. Li, “CO selective oxidation in a
    microchannel reactor for PEM fuel cell” Chem. Engineering J., 101, 101
    (2004).
    Choudhary, T. V., and D. W. Goodman, “CO-free fuel processing for fuel
    cell applications” Catal. Today., 77, 65 (2002).
    Dow Wei-Ping, Yu-Piao Wang, and Ta-Jen Huang, “Yttria-stabilized
    zirconia supported copper oxide catalysy” , J. Catal., 160, 155 (1996)
    de Jong, K. P., J. W. Geus, and J. Joziasse, “An infrared spectroscopic
    study of the adsorption of carbon monoxide on silica-supported copper
    oxide” , J. Catal., 65, 437 (1980).
    Evans, J. W., M. S. Winwright, A. J. Bridgewater, and D. J. Young, “On
    the determination of copper surface area by reaction with nitrous oxide” ,
    Appl. Catal., 7, 75 (1983).
    Eswaramoorthi, I., V. Sundaramurthy, and A. K. Dalai, “Partial oxidation
    of methanol for hydrogen production over carbon nanotubes supported
    Cu-Zn catalysts” , Appl. Catal. A, 313, 22 (2006).
    Fleisch, T. H., and R. L. Mieville, “Studies on the chemical state of Cu
    during methanol synthesis” , J. Catal., 90, 165 (1984).
    Fde Jong, K. P., J. W. Geus, and J. Joziasse, “An infrared spectroscopic
    study of the adsorption of carbon monoxide on silica-supported copper
    oxide” , J. Catal., 90, 165 (1984).
    Guerriro-Ruiz, A., I. Rodriguez-Ramos, and J. L. G. Fierro, Appl. Catal.,
    72, 119 (1991).
    Guerreiro, E. D., O. F. Gorriz, G. Larsen and L.A. Arrua, “Cu/SiO2
    catalysts for methanol to methyl formata dehydrogenation a comparative
    study using different preparation techniques”, Appl. Catal. A, 204, 33
    (2000).
    Gil. A., A. Diaz., L. M. Gandia, and M. Montes, “Influence of the
    preparation method and the nature of the support on the stability of nickel
    catalysts”, Appl. Catal. A, 109, 167 (1994).
    Huang, T. J. and S. Chren, “Kinetics of partial oxidation of methanol over
    a copper-zinc catalyst”, Appl. Catal. A, 40, 43 (1986a).
    Huang, T. J. and S. W. Wang, Appl. Catal. 24, 287 (1986b).
    Jackson, S. D., F. J. Robertson, and J. Willis, “A study of copper/silica
    catalysts: Reduction, Adsorption and Reaction” , J. Mol. Catal., 63, 255
    (1990).
    Jeon S. G., Chung J. S. “Preperation and characterization of
    silica-supported copper catalysts for the dehydrogenation of cyclehexanol
    to cyclohxanone” , Appl. Catal A., 115, 29 (1994)
    Kumar, R., S. Ahmed and M. Kruplet, K. M. Myles, Argone National
    Laboratory, Report ANL-92/31, Argone, IL, USA,1992.
    Kohler, M. A., H. E. Curry-Hyde, A. E. Hughes, B. A. Sexton, and N. W.
    Cant, “The structure of Cu/SiO2 catalysts prepared by the ion- exchange
    technique” , J. Catal., 108, 323 (1987).
    Marchi, A. J., J. L. G. Fierro, J. Santamara, and A. Monz ó n,
    “Dehydrogenation of isopropylic alcohol on Cu/SiO2 catalyst: a study of
    the activity evolution and reactivation of the catalyst” , Appl. Catal. A,
    142, 375 (1996).
    Navarro, R. M., Pena, M. A., Fierro, and J. L. G., ”Production of
    hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3
    catalysts”, J. Catal., 212, 112 (2002).
    Newson, E., P. Mizsey, T. Truong and P. Hottinger, Stud. Surf. Sci.
    Catal.,130, 695 (2000).
    Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Temperature
    programmed reduction of copper-silica catalysts prepared by ion
    exchange” Bull. Chem. Soc. Jpn., 56 1337(1983).
    Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Characterization of
    copper-silica catalysts prepared by ion exchange” , Appl. Catal., 2, 379
    (1982).
    Shen, G.C., Fujita, S.i., S. Matsumoto, and N. Takezawa, J. Mol. Catal. A,
    124, 123 (1997).
    Takezawa, N., and N. Iwasa, “Steam reforming and dehydrogenation of
    methanol: Difference in the catalytic functions of copper and group VIII
    metala”, Catal. Today , 36, 45 (1997).
    Traxel, B. E., and Hohn, K. L., “Partial oxidation of methanol at
    millisecond contact times”, Appl. Catal. A., 244, 129 (2003).
    Toupance, T., M. Kermarec, and C. Louis, “Metal particles size in
    silica-supported copper catalysts influence condition of preperation and
    of thermal pretreatments”,J. Phys. Chem.B, 104, 965(2000)
    Tu, Y. J., Y. W. Chen, and C. Li, “Characterization of unsupported
    copper-chromium catalysts for ethanol dehydrogenation” , J. Mol. Catal.,
    89, 179 (1994).
    van den Oetelaar, L. C. A., A. Partridge, P. J. A. Stapel, C. F. J. Flipse,
    and H. H. Brongersma, “A surface science study of model catalysts. 1.
    quantitative surface analysis of wet-chemically prepared Cu/SiO2 model
    catalysts” , J. Phys. Chem. B, 102, 9532 (1998).
    van der Grift, C. J. G., A. Mulder and J. W. Geus, “Characterization of
    silica-supported copper catalysts by means of temperature- programmed
    reduction”, Appl. Catal., 60, 181 (1990a).
    van der Grift, C. J. G., A. F. H. Wielers, A. Mulder, and J. W. Geus, “The
    reduction behaviour of silica-supported copper catalysts prepared by
    deposition-precipitation” , Thermochimica Acta, 171, 95 (1990b).
    van der Grift, C. J. G., P. A. Elberse, A. Mulder, and J. W. Geus,
    “Preparation of silica-supported copper catalysts by means of
    deposition-precipitation” , Appl. Catal., 59, 275 (1990c).
    van der Grift, C. J. G., A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M.
    de Boer, M. Versluijs-Helder, and J. W. Geus, “Effect of the reduction
    treatment on the structure and reactivity of silica-supported copper
    particles” , J. Catal., 131, 178 (1991).
    van Dillen, A. J., G. W. Geus, L. A. M. Hermans, and J. van der Meijden,
    in “Proceedings, 6th International Congress on Catalysis, London, 1976” ,
    Chemical Society, London, 677 (1977).
    Velu, S., K. Suzuki, and T. Osaki, “Selective production of hydrogen by
    partial oxidation of methanol over catalysts derived from CuZnAl-layered
    double hydroxides”, Catal. Letters., 62, 159 (1999).
    Wang, Zhenlu, Q. Liu, J. Yu, T. Wu, and G. Wang, “Surface structure and
    catalytic behavior of silica-supported copper catalysts prepared by
    impregnation and sol-gel methods”, Appl. Catal. A, 239, 87 (2003a).
    Wang, Z., W. Wang, and G. Lu, “Studies on the active species and on
    dispersion of Cu in Cu/SiO2 for hydrogen production via methanol
    partial oxidation”, Int. J. Hydrogen Energy. 28, 151 (2003b).
    Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen
    by partial oxidation of methanol over Cu/Cr catalysts” J. Mol. Catal.
    191, 123 (2003c).
    Yahiro, H., K. Nakaya, T. Yamamoto, K. Saiki and H. Yamaura, “Effect
    of calcination temperature on the catatic activity of copper supported on
    γ-alumina for the water-gas-shift reaction ”, Catal. Comm., 7, 228 (2006).

    QR CODE
    :::