跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊若函
Jo-Han Yang
論文名稱: 用於不斷發展的分類法之具備新穎性檢 測的分層文本分類技術
Hierarchical text classification with novelty detection for evolving taxonomies
指導教授: 蔡宗翰
Richard Tzong-Han Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 36
中文關鍵詞: 自然語言處理階層式文字分類階層式新類偵測
外文關鍵詞: Nature Language Processing, Hierarchical Text Classification, Hierarchical Novelty Detection
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在深度學習的領域中,分類任務的技術越趨成熟,而近年來相關研
    究人員也陸續投身於具備新穎性檢測的階層式分類方法。我們在此篇
    論文提出了一個利用分解信心值和連接條件機率,達到具新穎性檢測
    的階層式分類模型,且訓練過程中不需加入額外的新類別資料,而基
    準模型包含了自頂向下方法及攤平方法。將我們提出的模型與基準模
    型相互比較,從結果可以得知,我們的模型除了有效提升已知類別的
    準確度外,於尋找新的分類上也更加精準。此外針對階層式新類偵測
    的任務,論文中提出了一個新的算分方法,目的是同時考慮新類偵測
    以及階層式分類兩個任務,使其能更精確地顯示出模型的效能。


    With the development of classification methods based on deep learning,
    hierarchical classification tasks with new class detection began to attract researchers’ attention. In this paper, we propose a hierarchical classification
    with a novelty detection model by decomposing confidence and concatenating conditional probability, which can be trained without labeled novelty data.
    We compare it with a baseline model that combines the top­down method and
    flatten method. From the results, we found that our model can improve the
    classification accuracy of known categories and find instances belonging to
    new categories more effectively. We propose a new evaluation metric for the
    hierarchical novelty detection task. It considers both novelty detection and
    hierarchical classification so that it is able to express the performance of the
    model more obviously.

    Contents 中文摘要 i Abstract ii 謝誌 iii Contents iv List of Figures vi List of Tables vii 1 Introduction 1 2 Related Work 4 2.1 Pre­trained Language Model . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Hierarchical Classification . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Novelty detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Hierarchical evaluation measure . . . . . . . . . . . . . . . . . . . . . . 8 3 Method 11 3.1 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Hierarchical Decomposed Network . . . . . . . . . . . . . . . . . . . . . 12 3.3 Concatenating Conditional Probability . . . . . . . . . . . . . . . . . . . 15 iv 4 Experiment 17 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 Evaluation of our model and baseline . . . . . . . . . . . . . . . . . . . 20 4.4 Ablation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Conclusion 23 Bibliography 24

    [1] J. Devlin, M.­W. Chang, K. Lee, and K. Toutanova, “Bert: Pre­training of deep
    bidirectional transformers for language understanding,” 2019.
    [2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient­based learning applied to
    document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
    1998.
    [3] L. S. Larkey and W. B. Croft, “Combining classifiers in text categorization,” in
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research
    and Development in Information Retrieval, ser. SIGIR ’96. New York, NY, USA:
    Association for Computing Machinery, 1996, p. 289–297. [Online]. Available:
    https://doi.org/10.1145/243199.243276
    [4] D. Gao, W. Yang, H. Zhou, Y. Wei, Y. Hu, and H. Wang, “Deep hierarchical classification for category prediction in e­commerce system,” 2020.
    [5] G.­R. Xue, D. Xing, Q. Yang, and Y. Yu, “Deep classification in large­scale
    text hierarchies,” in Proceedings of the 31st Annual International ACM SIGIR
    Conference on Research and Development in Information Retrieval, ser. SIGIR ’08.
    24
    New York, NY, USA: Association for Computing Machinery, 2008, p. 619–626.
    [Online]. Available: https://doi.org/10.1145/1390334.1390440
    [6] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out­ofdistribution examples in neural networks,” 2018.
    [7] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai, “Class­based
    n­gram models of natural language,” Comput. Linguist., vol. 18, no. 4, p. 467–479,
    Dec. 1992.
    [8] T. Mikolov, M. Karafiát, L. Burget, J. H. Cernocký, and S. Khudanpur, “Recurrent
    neural network based language model,” in INTERSPEECH, 2010.
    [9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
    L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
    Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio,
    H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
    Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
    2017/file/3f5ee243547dee91fbd053c1c4a845aa­Paper.pdf
    [10] C. N. Silla and A. A. Freitas, “A survey of hierarchical classification across different
    application domains,” Data Mining and Knowledge Discovery, vol. 22, pp. 31–72,
    2010.
    [11] S. Kumar, J. Ghosh, and M. Crawford, “Hierarchical fusion of multiple classifiers
    for hyperspectral data analysis,” Pattern Anal. Appl., vol. 5, pp. 210–220, 06 2002.
    25
    [12] W. Liu, X. Wang, J. D. Owens, and Y. Li, “Energy­based out­of­distribution detection,” 2021.
    [13] Y.­C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out­ofdistribution image without learning from out­of­distribution data,” 06 2020, pp.
    10 948–10 957.
    [14] S. Kiritchenko and F. Famili, “Functional annotation of genes using hierarchical text
    categorization,” Proceedings of BioLink SIG, ISMB, 01 2005.
    [15] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
    Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Łukasz Kaiser,
    S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang,
    C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and
    J. Dean, “Google’s neural machine translation system: Bridging the gap between
    human and machine translation,” 2016.
    [16] K. Lee, K. Lee, K. Min, Y. Zhang, J. Shin, and H. Lee, “Hierarchical novelty detection for visual object recognition,” 2018

    QR CODE
    :::