跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳憲瑞
Hsien-Jui Chen
論文名稱: 無線寬頻系統之前端接收機與頻率合成器暨V頻段除頻器之研製
The Implementations on Wireless System of Wide-Band Front-End Receiver, Frequency Synthesizer, and V Band Frequency Divider
指導教授: 邱煥凱
Hwann-Kaeo Chiou
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 82
中文關鍵詞: 接收機頻率合成器除頻器
外文關鍵詞: Receiver, Frequency Synthesizer, Frequency Divide
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以TSMC 0.18-μm CMOS製程與TSMC 0.13-μm CMOS製程,研製應用於超寬頻(Ultra Wideband)系統之前端接收機、頻率合成器以及應用於V頻段之注入式鎖定除三除頻器。
    第一部份為超寬頻接收機,此電路包含低雜訊放大器及混頻器。低雜訊放大器選用電阻並聯負回授來達成寬頻之需求。此外,電路中加入一電感來改善高頻增益衰減的問題。而為了達到寬頻輸入阻抗匹配,混頻器之轉導極加入了一負回授電阻。實驗結果顯示出,整體接收機之轉換增益為19.29 ~ 17.12 dB(Single-ended),輸入反射損耗最差小於-6.7 dB。雜訊指數於中頻100 MHz量得值為5.25 ~ 6.89 dB (DSB)。1-dB壓縮點為-24 ~ -28 dBm。三階截斷點為-7 ~ -11 dBm。LO-IF隔離度為-44 ~ -57 dB,LO-RF隔離度為-52.5 ~ -77 dB,RF-IF隔離度為-19.6 ~ -59 dB,整體電路之功率損耗為29.1 mW。
    第二部份為超寬頻頻率合成器,此電路包含四相位壓控振盪器(QVCO)、電流模式邏輯(CML)除頻器、真單一時脈(TSPC)除頻器、頻率選擇器(Frequency Selector)、單端頻帶混頻器(SSB Mixer)、相頻檢測器(PFD)、充電泵(Charge Pump)、迴路濾波器(Loop Filter)。在壓控振盪器的部份,為了防止製程變異所導致振盪頻率偏移,加入了二進位加權開關,並提出了一適用於選擇開關電容以及變容器數值之經驗方程式。此外,為了提高頻率選擇器之隔離度,於電路中加入了複製(Dummy)電晶體。實驗結果顯示出,此電路可產生6個頻帶之訊號源以提供予UWB系統使用。整體迴路之相位雜訊在振盪頻率8.448 GHz差頻1MHz處,其值為-103.51 dBc/Hz。而在差頻10 kHz處,相位雜訊為-80.53 dBc/Hz。整體迴路之鎖住時間(Settling Time)大約為10 μs。頻帶間切換時間<1 ns。6336 MHz頻段其旁帶抑制量為-37.75 dBc。整體電路之功率損耗為93.4 mW。
    第三部份為60 GHz注入式鎖定除三除頻器,其中包含兩個不同的架構。架構一之除頻器實驗結果如下,當Vtune從0 V改變至1.8 V,注入訊號功率為5 dBm時,其可除頻率範圍為58.02 ~ 65.99 GHz。當Vtune固定於1.8 V,注入訊號功率為5 dBm時,單點電壓(@Vtune = 1.8 V)之鎖住範圍為180 MHz。此除頻器電路與緩衝放大器之直流功率損耗分別為1.395 mW及3.48 mW;第二個架構為改良第一種架構之除頻器,與第一種架構之不同處為,此除頻器未加入前置放大器,而改用變壓器直接注入之方式,有效提高注入效率,增加鎖住範圍。架構二之除頻器實驗結果如下,當Vtune從0 V改變至1.8 V,注入訊號功率為5 dBm時,其可除頻率範圍為56.5 ~ 66.4 GHz。當Vtune固定於1.8 V,注入訊號功率為5 dBm時,單點電壓(@Vtune = 1.8 V)之鎖住範圍為1750 MHz。此除頻器電路與緩衝放大器之直流功率損耗分別為3 mW及3.85 mW。


    The thesis presents an Ultra Wideband (UWB) receiver front end, frequency synthesizer and V band injection locked frequency divider, which are implemented in TSMC 0.18-μm and 0.13-μm CMOS technologies, respectively.
    The functional block of Ultra wide band (UWB) receiver front end includes a low noise amplifier (LNA) and a mixer. The low noise amplifier employs the RC shunt feedback technique for broadening the bandwidth. Besides, an inductor is used as an interstage matching at the cascode LNA which efficiently improve the flatness of the cascode LNA. The RC shunt feedback is applied to the gm stage of mixer for input impedance matching of reveiver. The experimental results of the receiver are a conversion gain of 19.29 ~ 17.12 dB (Single-ended), an input return loss better than 6.7 dB, a noise figure of 5.25 ~ 6.89 dB (DSB) at 100 MHz IF frequency, 1-dB compression point of -24 ~ -28 dBm, an input third order intercept point of -7 ~ -11 dBm, an LO-IF isolation of -44 ~ -57 dB, an LO-RF isolation of -52.5 ~ -77 dB, an RF-IF isolation of -19.6 ~ -59 dB. The total power consumption is 29.1 mW.
    The circuit block of ultra wideband (UWB) frequency synthesizer includes a quadrature voltage control oscillator (QVCO), a current mode logic (CML) divider, a true single phase clock (TSPC) divider, a frequency selector, a single sideband mixer (SSB Mixer), a phase frequency detector (PFD), a charge pump and a loop filter. The experimental results show that the designed sysnthesizer generates six bands for the local signals in UWB transmitter system. In the VCO design, the binary weighted band switching capacitor is used to calibrate the frequency drifting under process variations. Beside, a useful formula is proposed to choose the value of varactor and band switching capacitor. In frequency selector deisgn, the proposed dummy transistor is added to improve isolation. The measured close loop phase noise is -103.51 dBc/Hz at 1 MHz offset and -80.53 dBc/Hz at 10 kHz offset in 8.448 GHz band. The settling time of this loop is about 10 μs. The switching time between two sub-bands is small then 1 ns. The sideband suppression is low as -37.75 dBc in the 6336 MHz band. The total power consumption of the synthesizer is 93.4 mW.
    Two injection locked frequency dividers was investigated in this study. In the first injection locked frequency divider, the obtained locking range is 180 MHz with injection power of 5 dBm at Vtune of 1.8V. The total loacking range of divider is from 58.02 ~ 65.99 GHz which is correspondent to a locking range of 7.97 GHz while varying Vtune from 0 V to 1.8 V. The power consumption of core circuit and buffer amplifier is 1.395 mW and 3.48 mW, respectively. The second topology of frequency divider is the improvement version with respect to the first one. The difference between these two dividers is the second topology of frequency divider without using preamplifier, instead of the proposed transformer direct injection method to improve injection efficiency and locking range. The second proposed ILFD achieved the locking range of 1.75 GHz at the injection power of 5 dBm and Vtune of 1.8 V. The total locking range of the divider is from 56.5 to 66.4 GHz which is correspondent to a locking range of 9.9 GHz while varying Vtune from 0 V to 1.8 V. The power consumption of core circuit and buffer amplifier is 3 mW and 3.85 mW, respectively.

    第一章 緒論 1 1-1 研究動機 2 1-2 研究成果 2 1-3 章節簡述 2 第二章 寬頻系統之前端接收機電路 3 2-1 簡介 3 2-2 接收機之重要參數 4 2-3 雜訊指數 6 2-3.1 MOS的雜訊 7 2-4 架構選取 9 2-4.1低雜訊放大器 9 2-4.2混頻器 11 2-5 電阻並聯回授低雜訊放大器 11 2-6 電阻並聯回授暨兩極點低通濾波器之單平衡混頻器 13 2-7 量測結果與討論 17 第三章 寬頻系統之頻率合成器 23 3-1簡介 23 3-2頻帶規劃 24 3-3設計流程 25 3-4運用於MB-OFDM超寬頻系統之頻率合成器 26 3-4.1四相位互補式交錯耦合LC壓控振盪器 26 3-4.1.1二進位加權開關LC諧振腔之方程式 27 3-4.1.2壓控振盪器設計 30 3-4.1.3四相位產生原理 33 3-4.2電流模式邏輯(CML)除頻器 34 3-4.3真單一相位時脈(TSPC)除頻器 36 3-4.4高隔離度頻率選擇器 37 3-4.5單邊頻帶混頻器(Single Sideband Mixer) 39 3-4.6相頻檢測器(Phase-Frequency Detector) 42 3-4.7充電泵(Charge Pump) 43 3-4.7迴路濾波器(Loop Filter) 44 3-5量測結果與討論 45 3-5.1 壓控振盪器量測結果 45 3-5.2電流模式邏輯除頻器量測結果 47 3-5.3真單一相位時脈除頻器量測結果 50 3-5.4超寬頻系統頻率合成器整體性能量測結果 51 第四章 V頻段系統之除頻器 60 4-1 簡介 60 4-2 架構選取 61 4-3 60 GHz低功率注入式鎖定除三除頻器:架構一 63 4-3.1設計原理與理論分析 63 4-3.2 量測結果與討論 67 4-4 60 GHz低功率注入式鎖定除三除頻器:架構二 71 4-4.1 變壓器 72 4-4.2 量測結果與討論 73 第五章 結論 78 5-1 結論 78 5-2 未來期許與研究方向 79 參考文獻 80

    [1] High Rate Ultra Wideband PHY and MAC Standard, ECMA standard 368, Dec. 2005.
    [2] A. V. Garcia, C. Mishra, F. Bahmani, J. S. Martinez, and E. S. Sinencio, “An 11-Band 3-10 GHz Receiver in SiGe BiCMOS for Multiband OFDM UWB Communication,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 935-947, Apr. 2007.
    [3] B. Razavi University of California, Los Angeles “RF Microelectronics”
    [4] L. E. Larson, “Silicon Technology Tradeoffs for Radio-Frequency / Mixed-Signal Systems-on-a-Chip,” IEEE J. Solid-State Circuits, vol. 50, pp. 683–699, Mar. 2003.
    [5] T. H. Lee, “The design of CMOS radio-frequency integrated circuits” Communications Engineer, Vol 2, No. 4, Aug.-Sept. 2004.
    [6] H. Xie and A. Wang, “A Fine-Tuned Low-Power LNA for Lower-Band UWB Transceiver,” IEEE Electron Devices and Solid-State Circuits (EDSSC), 19-21, pp. 217-220, Dec. 2006.
    [7] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, and S. G. Lee, “An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System,” IEEE J. Solid-State Circuits, vol. 40, pp. 544–547, Feb. 2005.
    [8] P. H. and D. Lin, “A Performance Optimized CMOS Distributed LNA for UWB Receivers,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 18–21, pp. 337–340, Sept. 2005.
    [9] G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-μm CMOS Selective Receiver Front-End for UWB Applications,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1764–1771, Aug. 2006.
    [10] M. Ranjan, and L. E. Larson, “A Low-Cost and Low-Power CMOS Receiver Front-End for MB-OFDM Ultra-Wideband Systems,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 592–601, Mar. 2007.
    [11] B. Shi and M. Y. W. Chia, “A 3.1-10.6 GHz RF front-end for multiband UWB wireless receiver,” in IEEE Proc. Radio Frequency Integrated Circuit Symp., pp. 343-346, June 2005.
    [12] F. S. Lee, and A. P. Chandrakasan, “A BiCMOS Ultra-Wideband 3.1-10.6-GHz Front-End,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp.1784–1791, Aug. 2006.
    [13] B. Razavi, T. Aytur, F. R. Yang, R. H. Yan, H. C. Kang, C. C. Hsu, and C. C. Lee, “ A 0.13 μm CMOS UWB transceiver,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, pp. 216,594, Feb. 2005.
    [14] R. Roovers, D. M. W. Leenaerts, J. Bergervoet, K. S. Harish, R. C. H. van de Beek, G. van der Weide, H. Waite, Y. Zhang, S. Aggarwal, and C. Razzell, “An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2563–2572, Dec. 2005.
    [15] J. Lee, “A 3-to-8-GHz fast-hopping frequency synthesizer in 0.18μm CMOS technology,” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp. 566–573, Mar. 2006.
    [16] A. Ismail, and A. Abidi, “A 3.1- to 8.2-GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18-μm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE J. of Solid-State Circuits, vol. 40, pp.2573–2582, Dec. 2005.
    [17] G. Y. Tak, S. B. Hyun, T. Y. Kang, B. G. Choi, and S. S. Park, “A 6.3–9-GHz CMOS Fast Settling PLL for MB-OFDM UWB Applications,” IEEE J. of Solid-State Circuits, vol. 40, no. 8, pp.1671–1679, Aug. 2005.
    [18] A. D. Berny, A. M. Niknejad and R. G. Meyer, “A 1.8-GHz LC VCO With 1.3-GHz Tuning Range and Digital Amplitude Calibration,” IEEE J. of Solid-State Circuits, vol. 40, no. 4, pp.909–917, Apr. 2005.
    [19] N. H. W. Fong, J. O. Plouchart, N Zamdmer, D. Liu, L. F. Wagner, C. Plett, and N. G. Tarr, “Design of Wide-Band CMOS VCO for Multiband Wireless LAN Applications,” IEEE J. of Solid-State Circuits, vol.38, no. 8, pp.1333–1342, Aug. 2003.
    [20] A. Hajimiri and T. H. Lee, “Design Issues in CMOS Differential LC Oscillators,” IEEE J. of Solid-State Circuits, vol.34, no. 5, pp.717–724, May 1999.
    [21] J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in Differential LC Oscillators,” IEEE Custom Integrated Circuits Conference (CICC), pp. 569-562, 2000.
    [22] Z. Gu and A. Thiede, “18 GHz low-power CMOS static frequency divider,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 21–24 May 2000, pp. 569–572.
    [23] D. Banerjee. “PLL performance, Simulation, and design,” National Semiconductor, 1998.
    [24] D. Leenaerts et al., “A SiGe BiCMOS 1 ns fast hopping frequency synthesizer for UWB radio,” in IEEE Int. Solid-State Circuits Conf.(ISSCC) Dig. Tech. Paper, Feb. 2005, pp. 202-203.
    [25] H. Zheng, and H. C. Luong, “A 1.5 V 3.1 GHz–8 GHz CMOS Synthesizer for 9-Band MB-OFDM UWB Transceivers,” IEEE J. of Solid-State Circuits, vol.42, no. 6, pp.1250–1260, June 2007.
    [26] J. Craninckx and M. Steyaert, “A 1.75 GHz/3V dual-modulus divide-by-128/129 prescaler in 0.7μm CMOS,” in Proc. ESSCIRC, pp. 254–257, Sept.1995.
    [27] D. Pfaff and Q. Huang, “A quarter-micron CMOS 1 GHz VCO/prescaler-set for very low power applications,” in IEEE Custom Integrated Circuits Conf. (CICC), pp.649–652, May 1999.
    [28] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456–463, Mar. 1996.
    [29] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, pp.259–262, June 2003.
    [30] H. D.Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” in Proc. Eur. Solid-State Circuits Conf., Firenze, Italy, pp. 823–826, Sept. 2002.
    [31] H.Wu and A. Hajimiri, “A 19 GHz, 0.5mW, 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 412–413, Feb. 2001.
    [32] H. Wu, L. Zhang, “A 16-to-18GHz 0.18μm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Paper, pp. 2482-2491, Feb. 2006.
    [33] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813–821, June 1999.
    [34] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp.594–601, Apr. 2004.
    [35] M. Tiebout, “A 50 Ghz Direct Injection Locked Oscillator Topology as Low Power Frequency Divider in 0.13μm CMOS,” IEEE Solid-State Circuit Conf. (ESSCIRC), pp.73-76, Sept. 2003.
    [36] J. C. Chien, C. S. Lin, L. H. Lu, H. Wang, J. Yeh, C. Y. Lee, and J. Chern, “A Harmonic Injection-Locked Frequency Divider in 0.18-μm SiGe BiCMOS,” IEEE Microwave and Wireless Components Letters, vol. 10, no. 10, pp. 561–563, Oct. 2006.
    [37] S. H. Wen et al., “A 60GHz Wide Locking Range CMOS Frequency Divider using Power-Matching Technique,” IEEE Solid-State Circuit Conf. (ASSCC), pp.187-190, Nov. 2006.
    [38] DICKSON et al., “30-100-GHz Inductors and Transformers for Millimeter-Wave (Bi)CMOS Integrated Circuit,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 1, pp.123–133, Jan. 2005.

    QR CODE
    :::