| 研究生: |
沈仁傑 Ren-Jieh Shen |
|---|---|
| 論文名稱: |
多商店下的關聯規則挖掘 |
| 指導教授: |
陳彥良
Yen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 連鎖商店 、關聯規則 、資料挖掘 |
| 外文關鍵詞: | association rule, data mining |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從交易資料庫中利用關聯規則的挖掘可以找出商品之間的關聯性,對於行銷推廣、商品搭配、商品貨架設計、生產排程等有絕大的幫助。傳統關聯規則挖掘方式只能針對單店的環境來挖掘出關聯規則,但在連鎖系列商店中,各家商店為了提高競爭力,每一家商店在不同的地點及時節會販賣不一樣的商品。例如醫院附近連鎖店所販賣的醫療性用品、觀光地區附近所販賣的觀光性商品、夏天所販賣的冰品、以及冬天所販賣的火鍋、特殊節日所販賣的禮品等。傳統關聯規則挖掘方式對於這些季節性及地區性商品在計算support值時都一視同仁地處理。此種方式將會造成其support值的低估而忽略了該商品於短期內或某區域內造成熱賣的事實。
為了解決傳統關聯規則挖掘方式應用在多商店環境時所產生的問題,我們提出了包含時間地點的關聯規則挖掘方式,此方法在計算不同商品的support值時,必須考量到不同的商品具有不同的上架地點及時間,而不是一視同仁地處理,如此算出來的support值才是正確的。而對於正確的confidence值的計算方式,我們也另外提出一個演算法來解決。
最後實驗模擬的結果證明,傳統關聯規則挖掘方式如果應用在多商店的環境之下時,將會造成釵h地區性或季節性商品的關聯規則無法被挖掘出來,而使用包含時間地點的關聯規則挖掘方式時,將可以解決這些問題。
[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami, “ Mining Association Rules Between Sets of Items in Large Databases” Proceedings of the ACM SIGMOD International conference on Management of Data, Pages 207-216, 1993.
[AR00] Juan M. Ale, Gustavo H. Rossi, “ An Approach to Discovering Temporal Association Rules”, Proceedings of the 2000 ACM symposium on Applied computing 2000 (volume 1), Pages 294-300, 2000.
[AS94] Rakesh Agrawal, Ramakrishnan Srikant, “ Fast Algorithms for Mining Association Rules, ” Proc. of the 20 th VLDB Conference Santiago, Chile, 1994.
[AS95] R. Agrawal and R. Srikant, “ Mining Sequential Patterns, ” Proceedings of the 7th International Conference on Data Engineering, pp. 3-14, 1995.
[AS96] A Agrawal and J.C. Shafer, “ Parallel Mining of Association Rules, ” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, 962-969, Dec. 1996.
[BL99] J. Borges and M. Levene, “ Mining Association Rules in Hypertext Databases, ” Knowledge Discovery and Data Mining, 1999.
[BMUT97] S, Brin, R. Motwani, J. Ullman, and S. Tsur, “ Dynamic Itemset Counting and Implication Rules for Market Basket Data, ” ACM SIGMOD Conf. Management of Data, May 1997.
[C01] 陳彥良等, “ 資料間隱含關係的挖掘與展望, ” 二十一世紀台灣湧現中的資訊管理議題專家研討會, “大溪,鴻禧山莊”, 2001。
[CFK00] E. Clementini, P.D. Felice, and K. Koperski. “ Mining Multiple-level Spatial Association Rules for Objects with a Broad Boundary, ” Data and Knowledge Engineering, vol. 34, no. 3, pp. 251-270, Sep. 2000.
[CNFF96] D.W. Cheung, V.T. Ng, A.W. Fu, and Y. Fu, “ Efficient Mining of Association Rules in Distributed Databases, ” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 911-922, Dec. 1996.
[F99] A. A. Freitas, “ On Rule Interestingness Measures, ” Knowledge-Based Systems, vol. 12, no. 5, pp. 309-315, Oct. 1999.
[GC99] Sanjay Goil, Alok Choudhary, “ A parallel scalable infrastructure for OLAP and data mining, “ Database Engineering and Applications, 1999. IDEAS ''99. International Symposium Proceedings , 1999 Page(s): 178 -186
[H99] C. Hidber. “ Online Association Rule Mining, ” SIGMOD''99, 1999.
[HDY99] J. Han, G. Dong, and Y. Yin, “ Efficient Mining of Partial Periodic Patterns in Time Series Database, ” Proceedings of the 15th International Conference on Data Engineering, pp. 106-115, 1999.
[HF99] J. Han and Y. Fu, “ Mining Multiple-Level Association Rules in Large Databases, ” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 5, pp. 798-805, 1999.
[HPY00] J. Han, J. Pei, and Y. Yin. “ Mining Frequent Patterns without Candidate Generation, ” Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD''00), Dallas, TX, May 2000.
[JA99] R. J. Bayardo Jr. and R. Agrawal, “ Mining the Most Interesting Rules, ” In Proc. of the 5th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining, Aug. 1999.
[KFW98] C.M. Kuok, A.W. Fu, M.H. Wong, “ Mining Fuzzy Association Rules in Databases, ” SIGMOD Record, vol. 27, no. 1, pp. 41-46, 1998.
[KH95] K. Koperski and J. Han, “ Discovery of Spatial Association Rules in Geographic Information Databases, ” Proc. 4th Int''l Symp. on Large Spatial Databases (SSD95), Maine, pp. 47-66, Aug. 1995.
[LAS97] B. Lent, R. Agrawal and R. Srikant, “ Discovering Trends in Text Databases, ” Proc. of the 3rd Int''l Conference on Knowledge Discovery in Databases and Data Mining, Newport Beach, California, August 1997.
[LFH00] H. Lu, L. Feng, and J. Han. “ Beyond Intra-Transaction Association Analysis: Mining Multi-Dimensional Inter-Transaction Association Rules, ” ACM Transactions on Information Systems, vol. 18, no. 4, pp. 423-454, 2000.
[LHL99] S. Li, S. Hong, and C. Ling, “ New Algorithms for Efficient Mining of Association Rules, ” Information Sciences, vol. 118, no. 1-4, pp. 251-268, Sep. 1999.
[ORS98] B. Ozden, S. Ramaswamy, and A. Silberschatz, “ Cyclic Association Rules, ” Proceedings of the 14th International Conference on Data Engineering, pp. 412-421, 1998.
[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “ Efficient Mining of Association Rules Using Closed Itemset Lattices, ” Information Systems, vol. 24, no. 1, pp. 25-46, Mar. 1999.
[PCY97] J.-S. Park, M.-S. Chen, and P. S. Yu, “ Using a Hash-Based Method with Transaction Trimming for Mining Association Rules, ” IEEE Trans. on Knowledge and Data Engineering, vol. 9, no. 5, pp. 813-825, Oct. 1997.
[PH00] V. Pudi and J.R. Haritsa. “ Quantifying the Utility of the Past in Mining Large Databases, ” Information Systems, vol. 25, no. 5, pp. 323-343, July 2000.
[PHMZ00] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “ Mining Access Pattern Efficiently from Web Logs, ” Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 396-407, 2000.
[RS98] R. Rastogi and K. Shim, “ Mining Optimized Association Rules with Categorical and Numeric Attributes, ” the 14th International Conference on IEEE Data Engineering, Orlando, Florida, 1998.
[SA96] R. Srikant, R. Agrawal: “ Mining Quantitative Association Rules in Large Relational Tables, ” Proc. of the ACM-SIGMOD 1996 Conference on Management of Data, Montreal, Canada, June 1996.
[T93] Tansel, A. et al: Temporal Databases: Theory, Design, and Implementation. Benjaming/Cummings.1993.
[T96] H. Toivonen, “ Sampling Large Databases for Association Rules, ” the 22-th International Conference on Very Large Databases (VLDB''96), pp. 134-145, Mumbay, India, September 1996.
[Z00] M.J. Zaki, “ Scalable Algorithms for Association Mining, ” IEEE Trans. on Knowledge and Data Engineering, vol. 12, no. 3, pp. 372-390, May-June 2000.
[Z98] M.J. Zaki, “ Efficient Enumeration of Frequent Sequences, ” 7th International Conference on Information and Knowledge Management, pp 68-75, Washington DC, Nov. 1998.
[ZHLH98] Osmar R. Za?ane, Jiawei Han, Ze-Nian Li, Jean Hou.,“ Mining Multimedia Data, ” Proc. CASCON''98: Meeting of Minds, Toronto, Canada, November 1998