跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈仁傑
Ren-Jieh Shen
論文名稱: 多商店下的關聯規則挖掘
指導教授: 陳彥良
Yen-Liang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
畢業學年度: 90
語文別: 中文
論文頁數: 59
中文關鍵詞: 連鎖商店關聯規則資料挖掘
外文關鍵詞: association rule, data mining
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從交易資料庫中利用關聯規則的挖掘可以找出商品之間的關聯性,對於行銷推廣、商品搭配、商品貨架設計、生產排程等有絕大的幫助。傳統關聯規則挖掘方式只能針對單店的環境來挖掘出關聯規則,但在連鎖系列商店中,各家商店為了提高競爭力,每一家商店在不同的地點及時節會販賣不一樣的商品。例如醫院附近連鎖店所販賣的醫療性用品、觀光地區附近所販賣的觀光性商品、夏天所販賣的冰品、以及冬天所販賣的火鍋、特殊節日所販賣的禮品等。傳統關聯規則挖掘方式對於這些季節性及地區性商品在計算support值時都一視同仁地處理。此種方式將會造成其support值的低估而忽略了該商品於短期內或某區域內造成熱賣的事實。
    為了解決傳統關聯規則挖掘方式應用在多商店環境時所產生的問題,我們提出了包含時間地點的關聯規則挖掘方式,此方法在計算不同商品的support值時,必須考量到不同的商品具有不同的上架地點及時間,而不是一視同仁地處理,如此算出來的support值才是正確的。而對於正確的confidence值的計算方式,我們也另外提出一個演算法來解決。
    最後實驗模擬的結果證明,傳統關聯規則挖掘方式如果應用在多商店的環境之下時,將會造成釵h地區性或季節性商品的關聯規則無法被挖掘出來,而使用包含時間地點的關聯規則挖掘方式時,將可以解決這些問題。


    第一章 緒論 1 第二章 定義 6 第三章 時間地點關聯規則的挖掘 9 第一節 建立PT_INTERVAL 11 第二節 1-ITEMSET 14 第三節 N-ITEMSET 17 第四節 CANDIDATE ITEMSET的產生 18 第五節 CONFIDENCE值的計算及規則的產生 20 第四章 實例說明 25 第五章 實驗模擬 37 第一節 實驗設計 37 第二節 參數設定 40 第三節 評量方式 41 第四節 實驗結果 43 第五節 被低估的SUPPORT值及CONFIDENCE值 50 第六節 相關應用 51 第六章 結論與未來展望 53 參考文獻 54 附錄 58

    [AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami, “ Mining Association Rules Between Sets of Items in Large Databases” Proceedings of the ACM SIGMOD International conference on Management of Data, Pages 207-216, 1993.
    [AR00] Juan M. Ale, Gustavo H. Rossi, “ An Approach to Discovering Temporal Association Rules”, Proceedings of the 2000 ACM symposium on Applied computing 2000 (volume 1), Pages 294-300, 2000.
    [AS94] Rakesh Agrawal, Ramakrishnan Srikant, “ Fast Algorithms for Mining Association Rules, ” Proc. of the 20 th VLDB Conference Santiago, Chile, 1994.
    [AS95] R. Agrawal and R. Srikant, “ Mining Sequential Patterns, ” Proceedings of the 7th International Conference on Data Engineering, pp. 3-14, 1995.
    [AS96] A Agrawal and J.C. Shafer, “ Parallel Mining of Association Rules, ” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, 962-969, Dec. 1996.
    [BL99] J. Borges and M. Levene, “ Mining Association Rules in Hypertext Databases, ” Knowledge Discovery and Data Mining, 1999.
    [BMUT97] S, Brin, R. Motwani, J. Ullman, and S. Tsur, “ Dynamic Itemset Counting and Implication Rules for Market Basket Data, ” ACM SIGMOD Conf. Management of Data, May 1997.
    [C01] 陳彥良等, “ 資料間隱含關係的挖掘與展望, ” 二十一世紀台灣湧現中的資訊管理議題專家研討會, “大溪,鴻禧山莊”, 2001。
    [CFK00] E. Clementini, P.D. Felice, and K. Koperski. “ Mining Multiple-level Spatial Association Rules for Objects with a Broad Boundary, ” Data and Knowledge Engineering, vol. 34, no. 3, pp. 251-270, Sep. 2000.
    [CNFF96] D.W. Cheung, V.T. Ng, A.W. Fu, and Y. Fu, “ Efficient Mining of Association Rules in Distributed Databases, ” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 6, pp. 911-922, Dec. 1996.
    [F99] A. A. Freitas, “ On Rule Interestingness Measures, ” Knowledge-Based Systems, vol. 12, no. 5, pp. 309-315, Oct. 1999.
    [GC99] Sanjay Goil, Alok Choudhary, “ A parallel scalable infrastructure for OLAP and data mining, “ Database Engineering and Applications, 1999. IDEAS ''99. International Symposium Proceedings , 1999 Page(s): 178 -186
    [H99] C. Hidber. “ Online Association Rule Mining, ” SIGMOD''99, 1999.
    [HDY99] J. Han, G. Dong, and Y. Yin, “ Efficient Mining of Partial Periodic Patterns in Time Series Database, ” Proceedings of the 15th International Conference on Data Engineering, pp. 106-115, 1999.
    [HF99] J. Han and Y. Fu, “ Mining Multiple-Level Association Rules in Large Databases, ” IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 5, pp. 798-805, 1999.
    [HPY00] J. Han, J. Pei, and Y. Yin. “ Mining Frequent Patterns without Candidate Generation, ” Proc. 2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD''00), Dallas, TX, May 2000.
    [JA99] R. J. Bayardo Jr. and R. Agrawal, “ Mining the Most Interesting Rules, ” In Proc. of the 5th ACM SIGKDD Int''l Conf. on Knowledge Discovery and Data Mining, Aug. 1999.
    [KFW98] C.M. Kuok, A.W. Fu, M.H. Wong, “ Mining Fuzzy Association Rules in Databases, ” SIGMOD Record, vol. 27, no. 1, pp. 41-46, 1998.
    [KH95] K. Koperski and J. Han, “ Discovery of Spatial Association Rules in Geographic Information Databases, ” Proc. 4th Int''l Symp. on Large Spatial Databases (SSD95), Maine, pp. 47-66, Aug. 1995.
    [LAS97] B. Lent, R. Agrawal and R. Srikant, “ Discovering Trends in Text Databases, ” Proc. of the 3rd Int''l Conference on Knowledge Discovery in Databases and Data Mining, Newport Beach, California, August 1997.
    [LFH00] H. Lu, L. Feng, and J. Han. “ Beyond Intra-Transaction Association Analysis: Mining Multi-Dimensional Inter-Transaction Association Rules, ” ACM Transactions on Information Systems, vol. 18, no. 4, pp. 423-454, 2000.
    [LHL99] S. Li, S. Hong, and C. Ling, “ New Algorithms for Efficient Mining of Association Rules, ” Information Sciences, vol. 118, no. 1-4, pp. 251-268, Sep. 1999.
    [ORS98] B. Ozden, S. Ramaswamy, and A. Silberschatz, “ Cyclic Association Rules, ” Proceedings of the 14th International Conference on Data Engineering, pp. 412-421, 1998.
    [PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “ Efficient Mining of Association Rules Using Closed Itemset Lattices, ” Information Systems, vol. 24, no. 1, pp. 25-46, Mar. 1999.
    [PCY97] J.-S. Park, M.-S. Chen, and P. S. Yu, “ Using a Hash-Based Method with Transaction Trimming for Mining Association Rules, ” IEEE Trans. on Knowledge and Data Engineering, vol. 9, no. 5, pp. 813-825, Oct. 1997.
    [PH00] V. Pudi and J.R. Haritsa. “ Quantifying the Utility of the Past in Mining Large Databases, ” Information Systems, vol. 25, no. 5, pp. 323-343, July 2000.
    [PHMZ00] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “ Mining Access Pattern Efficiently from Web Logs, ” Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 396-407, 2000.
    [RS98] R. Rastogi and K. Shim, “ Mining Optimized Association Rules with Categorical and Numeric Attributes, ” the 14th International Conference on IEEE Data Engineering, Orlando, Florida, 1998.
    [SA96] R. Srikant, R. Agrawal: “ Mining Quantitative Association Rules in Large Relational Tables, ” Proc. of the ACM-SIGMOD 1996 Conference on Management of Data, Montreal, Canada, June 1996.
    [T93] Tansel, A. et al: Temporal Databases: Theory, Design, and Implementation. Benjaming/Cummings.1993.
    [T96] H. Toivonen, “ Sampling Large Databases for Association Rules, ” the 22-th International Conference on Very Large Databases (VLDB''96), pp. 134-145, Mumbay, India, September 1996.
    [Z00] M.J. Zaki, “ Scalable Algorithms for Association Mining, ” IEEE Trans. on Knowledge and Data Engineering, vol. 12, no. 3, pp. 372-390, May-June 2000.
    [Z98] M.J. Zaki, “ Efficient Enumeration of Frequent Sequences, ” 7th International Conference on Information and Knowledge Management, pp 68-75, Washington DC, Nov. 1998.
    [ZHLH98] Osmar R. Za?ane, Jiawei Han, Ze-Nian Li, Jean Hou.,“ Mining Multimedia Data, ” Proc. CASCON''98: Meeting of Minds, Toronto, Canada, November 1998

    QR CODE
    :::