跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡孟芬
Meng-Fen Tsai
論文名稱: 同軸式體積全像光碟儲存系統之研究
The study of collinear volume holographic storage
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 116
中文關鍵詞: 全像儲存
外文關鍵詞: holographic storage
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們建立出同軸式體積全像光碟儲存系統之計算模型。因為讀取光與參考光的相位不匹配,即讀取光微小位移將使得繞射強度快速地衰減,因此系統將發展出具有高儲存容量的特性。當此儲存系統之訊號輸入元件為一空間調制器,此系統將擁有光學平行處理的能力,增加訊號的傳輸速度。另外,當碟片在布拉格不匹配條件下,經由使用設計過的參考光圖形將使得繞射光在觀察面上無偏移行為。
    在本論文中我們研究繞射訊號之特性與系統的位移容忍度,並分析畫素間之串音,並有效的控制串音,使其對系統之影響降為最低,並期能實現且解決體積全像儲存之困難。


    We construct the computing model of the system of the collinear volume holographic storage. Because of the out of phase between reading light and reference light, which means that the strength of diffraction will decay rapidly due to the small displacement of reading light. Therefore, this system has the property of high capacity of storage. When the element of input signals of this system is a spatial light modulator, the system would have the ability of optical parallel processing, and it can increase the transfer rate of signals. Besides, when the system is in the Bragg mismatch condition, there will be no displacement of diffracted light if we use the designed reference pattern.
    In this paper, we research the property of diffracted signals and the shift tolerance of the system. We also analyze the crosstalk between pixels and control the crosstalk efficiently to reduce the influence to the system. And we hope that we can realize and solve the difficulties of volume holographic storage.

    摘要 Ⅰ Abstract Ⅱ 目錄 Ⅲ 第一章 緒論 1 1.1引言 1 1.2全像光學之發展 4 1.3 論文大綱 8 第二章 體積全像與其繞射效率 9 2.1耦合理論法 9 2.1.1 布拉格定律 9 2.1.2 耦合波理論 13 2.2 相位疊加法 27 第三章 同軸式體積全像光碟儲存系統 31 3.1 同軸式全像光碟記錄架構 32 3.2 系統架構 36 3.3 理論推導 39 第四章 系統之讀寫分析 44 4.1 布拉格條件下之繞射結果 45 4.1.1 參考光為縱向線段 45 4.1.2 參考光為圓環 47 4.1.3 參考光為同心圓環 49 4.1.4 參考光為軸向線段 51 4.2 布拉格不匹配之繞射結果 53 4.2.1 參考光為縱向線段 54 4.2.2 參考光為圓環 57 4.2.3 參考光為同心圓環 61 4.2.4 參考光為軸向線段 64 4.2.5 結論 67 4.3 繞射光光點之位移 68 4.4空間不變之特性 70 第五章 空間調制器為訊號光之讀取分析 75 5.1 布拉格條件下之繞射分析 76 5.2 布拉格不匹配之繞射結果 89 第六章 結論 96 參考文獻 97 中英文名詞對照表 102

    [1] J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New
    York, 2002).
    [2] G. W. Burr, “Holographic storage,” Encyclopedia of Optical Engineering,
    ed., R. B. Johnson and R. G. Driggers, Marcel Dekker, New York, 2003.
    [3] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A.
    Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and
    G. T. Sincerbox,“Holographic data storage,” IBM journal of research and
    development, 44, 2000.
    [4] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage,
    (Springer, New York, 2000).
    [5] D. Psaltis and F. Mok, “Holographic memories,” Scientic American, 70-76
    (1995).
    [6] J. J. Amodei and D. L. Staebler, “Holographic pattern fixing in
    electrooptic crystals,” Appl. Phys. Lett. 18, 540-542 (1971).
    [7] F. Micheron and G. Bismuth, “Electrical control of fixation and erasure
    of holographic patterns in ferroelectric materials,” Appl. Phys. Lett.
    20, 79-81 (1972).
    [8] D. L. Staebler, W. J. Burke,W. Philips, and J. J. Amodei, “Multiple
    storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys.
    Lett. 26, 182-184 (1975).
    [9] G. Mandulaa, K. Lengyela, L. Kovácsa, M. A. Ellabbanb, R. A. Ruppb, and M.
    Fallyb, “Thermal fixing of holographic gratings in nearly stoichiometric
    LiNbO3 crystals,” SPIE Proc. 4412, 226-230 (2001).
    [10] D. von der Linde, A. M. Glass, and K. F. Rogers, “Multiphoton
    photorefractive process for optical storage in LiNbO3,” Appl. Phys. Lett.
    25, 155-157 (1974).
    [11] F. Kajzar, “Multiphoton resonance effects in conjugated organic
    polymers,” Proc. of SPIE 1216, 216-225 (1990).
    [12] D. Psaltis, F. Mok, and H.-Y. S. Li, “Nonvolatile storage in
    photorefractive crystal”, Opt. Lett. 19, 210-212 (1994).
    [13] H. Guenther, G. Wittmann, R. M. Macfarlane, and R. R. Neurgankar,
    “Intensity dependence and white light gating of two color photorefractive
    gratings in LiNbO3,” Opt. Lett. 22, 1305-1307 (1997).
    [14] Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two step
    recording in lithum niobate using CW Lasers,” Phys. Rev. Lett. 78, 2944-
    2947 (1997).
    [15] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
    [16] G. Barbastathis and D. J. Brady, “Multidimensional Tomographic Imaging
    Using Volume Holography,” Proc. of IEEE 87, No. 12, 2098 – 2120 (1999).
    [17] G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with
    a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
    [18] 吳啟守,“光折變體積全像術之波長多工於高密度分波多工器之應用,”中原大學應
    用物理研究所碩士論文,中華民國九十年。
    [19] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive Coupler for Fault-
    Tolerant Coupling,” IEEE Photon. Techno. Lett. 7, 789 (1995).
    [20] A. Chiou, P. Yeh, C. Yang, and C. Gu, “Photorefractive spatial mode
    converter for multimode-to-single-mode fiber-optic coupling,” Opt. Lett.
    20, 1125 (1995).
    [21] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography,
    (Academic Press, New York, 1971).
    [22] T. T. Tschudi, C. Denz, and T. Kobialka “Aspects of phase-conjugating
    elements in analog/digital parallel computing networks,” Proc. of SPIE
    1319, 202-203 (1990).
    [23] P. D. Henshaw, S. A. Lis, and N. R. Guivens, Jr., “Compact 4-D optical
    neural network architecture,”Wavelength (nm) Final Report, contract no.
    F49620-89-C-0120 (Sparta, Relative spectral response [10 logl0(R/RO)] of
    two Inc., Lexington, Mass., April 1990).
    [24] C. C. Sun, Y. M. Chen, and W. C. Su, “An all-optical fiber sensing
    system based on random phase encoding and volume holographic
    interconnection,” Opt. Eng, Lett. 40, 160 (2001).
    [25] V. A. French, A. Siahmakoun, J. Spielvogel, “Angular multiplexing for
    lateral shear interferometry using photorefractive BaTiO3,” Proc. SPIE
    2622, 522-531(1995).
    [26] C. S. Kim, D. S. Noh, J. S. J., S. J. Kim, and J. K. Bae, “New angular
    multiplexing method for image storage in BaTiO3,” Proc. of SPIE 2754,
    216-226 (1996).
    [27] C. C. Sun, C. Y. Hsu, Y. O. Yang, W. C. Su, and A. E. T. Chiou, “All-
    optical angular sensing based on holography multiplexing with spherical
    waves,” Opt. Eng. 41, 2809-2813 (2002).
    [28] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using
    orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-
    1473 (1992).
    [29] A. Yariv, “Interpage and interpixel cross talk in orthogonal
    (wavelength multiplexed) holograms,” Opt. Lett. 18, 652-654 (1993).
    [30] G. Barbastathis, A. Pu, M. Levene, D. Psaltis, “Holographic 3D disks
    using shift multiplexing,” Proc. SPIE Vol. 2514, 355-362 (1995).
    [31] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of
    a shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
    [32] T. Tschudi, C. Denz, J. Lembcke, and M. Sedlatschek, “Storage of
    multivolume holograms using the phase-encoding technique,” Proc. SPIE
    2461, 233 (1995)
    [33] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using
    a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).
    [34] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic
    data storage based on orthogonal-phase-code multiplexing,” Appl. Opt.
    34, 6012–6015 (1995).
    [35] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of
    holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
    [36] C. C. Sun and W. C. Su, “Three-Dimensional Shifting Selectivity of
    Random Phase Encoding in Volume Holograms,” Appl. Opt. 40, 1253-1260
    (2001).
    [37] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey,
    “Holographic data storage in three-dimensional media,” Appl. Opt. 5,
    1303-1311 (1966).
    [38] H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell
    Sys. Technol. J. 48, 2909-2947 (1969).
    [39] C. C. Sun, “Simplified model for diffraction analysis of volume
    holograms,” Opt. Eng. 42, 1184-1185 (2003).
    [40] A. Yariv, and P. Yeh, Optical Waves in Crystals, (John Wiley & Sons, New
    York, 1984).
    [41] H. Horimai, and J. Li, “A Novel Collinear Optical Setup for Holographic
    Data Storage,” in Optical Data Storage 2004, B. V. K., Vijaya Kumar and
    H. Kobori, eds., Proc. SPIE 5380, 297-303 (2004).
    [42] H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” ISOM/ODS
    2005, ThE6.
    [43] H. Horimai, X. Tan, and J. Li, “Collinear Holography,” Appl. Opt. 44,
    No. 13, 2575-2579 (2005).
    [44] H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12,
    No. 2, 90-92 (2005).
    [45] H. Horimai, and X. Tan, “Holographic Versatile Disc System,” in SPIE
    Symposium on Optics & Photonics 2005, Organic Holographic Materials and
    Applications Ⅲ (San Diego, California, USA, 2005), Klaus Meerholz eds.,
    Proceedings of SPIE 5939, 1-9 (2005).
    [46] H. Horimai, and X. Tan, “Collinear technology for a holographic
    versatile disk,”Appl. Opt., 45, No. 5, 910-914 (2006).
    [47] H. Horimai, X. Tan, and Y, Aoki, “High Density Recording Storage System
    by Collinear Holography,” Photonics Management Ⅱ (Strasbourg, France,
    2005, John T. Sheridan, and Frank Wyrowski eds., Proc. of SPIE 6187,
    618701 (2006).
    [48] T. Shimura, S. Ichimura, R. Fujimura, K, Kuroda, X. Tan. and H. Horimai,
    “Analysis of a collinear holographic storage system: introduction of
    pixel spread function,” Opt. Lett., 31, No. 9, 1208-1210 (2006).
    [49] H Horimai and X. Tank, “Read-only holographic versatile disc system
    using laser Read-only holographic versatile disc system using laser
    diode,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006).

    QR CODE
    :::