跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱奕勛
I-HSUN CHIU
論文名稱: 降雨量與誘發山崩發生率之關係
The relationship between rainfall and the occurrence rate of induced landslides
指導教授: 李錫堤
Chyi-Tyi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 100
語文別: 中文
論文頁數: 210
中文關鍵詞: 降雨門檻值集水區淺層山崩雨量降雨誘發山崩崩壞比
外文關鍵詞: shallow landslide, drainage basin, rainfall threshold, rainfall, rainfall-induced landslides, landslide ratio
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 降雨誘發山崩是台灣目前主要的山崩災害,因此探討不同集水區之降
    雨量與誘發山崩之關係有其重要性。近年山崩潛感分析開始加入雨量因子
    進行統計,為瞭解雨量因子是否有其物理意義,因此挑選若干個設有雨量
    站的小集水區,觀察降雨量與誘發山崩發生率之關係。本研究在全台灣的
    沉積岩、板岩、變質岩三個不同的地質區中,選取適當的次集水區作為分
    析單元,測繪不同降雨事件之誘發山崩,並分析誘發山崩發生率與雨量因
    子之關係。降雨因子包括:最大時雨量、總雨量、平均降雨量強度、降雨
    延時以及最大3、6、9、12、24 小時雨量。誘發山崩發生率則以崩壞比表
    示;某一降雨事件分析單元內誘發山崩面積與該單元面積之比率稱為崩壞
    比。
    每一降雨事件之崩壞比與某一雨量因子之關係以最小平方法進行線性
    一次迴歸,發現各研究區R2 值結果良好,雨量因子與崩壞比具有正相關
    性,證實雨量因子作為山崩潛感模型促崩因子有其物理意義。本研究採用
    R2 值達0.5 以上之降雨誘發山崩崩壞比曲線,將曲線於橫軸之截距定義為
    該研究區降雨門檻值,發現各研究區的確有門檻值現象存在。同時證明,
    利用線性一次迴歸已足夠表示降雨量雨誘發山崩發生率之關係。本研究發
    現各地質區雖無統一的崩壞比曲線斜率及降雨門檻值,但是相鄰或者距離
    較近的地區較有相似的崩壞比曲線斜率及降雨門檻值。


    Rainfall-induced landslides is a major landslide disaster in Taiwan. To
    study the relationship between rainfall and induced landslides at different
    drainage basins is important. In recent years, landslide susceptibility analysis
    began to use rainfall as a triggering factor in statistics. For realizing the
    physical meaning of rainfall factor, we select a number of small drainage basins
    where a rainfall station in available to observe the relationship between rainfall
    and the occurrence rate of induced landslides. This study selects 17 study areas
    to map induce landslides of each rainfall events and to analysis the relationship
    between rainfall and the occurrence rate of induced landslides from the
    sedimentary terrain, the slate formation and the metamorphic complex in
    Taiwan. Rainfall factors include maximum hourly rainfall, total rainfall,
    average rainfall intensity, rainfall duration, and maximum 3, 6, 9, 12, 24 hourly
    rainfalls. We present the occurrence rate of induced landslides by the landslide
    ratio; the ratio of landslide area and total area in each study area.
    The correlation between the landslide ratio and a rainfall factor is positive.
    This supports that rainfall as a triggering factor used in a landslide
    susceptibility analysis is physically meaningful. This study uses a simple linear
    regression model to fit the relationship between the landslide ratio and a rainfall
    factor in each study area. The goodness of fit for the regression model is
    generally acceptable. We selected those models with R2 value larger than 0.5 to
    find out the intercept of the best fit line and the horizontal axis and to define a rainfall threshold. At the same time, we found that the use of a simple linear
    regression model is good enough to interpret the relationship between rainfall
    and the occurrence rate of induced landslides. Finally, we observe the landslide
    ratio curve and the rainfall threshold in each geologic province. Although the
    landslide ratio curve and the rainfall threshold are not consistent in a whole
    geologic province, they are similar in the adjacent or the closer study areas.

    目 錄 頁次 中文摘要 ................................................................................................................ I 英文摘要 .............................................................................................................. II 致 謝 ............................................................................................................. IV 目 錄 .............................................................................................................. V 圖 目 .......................................................................................................... VIII 表 目 ............................................................................................................. XI 第一章 緒論 ....................................................................................................... 1 1.1 研究動機與目的 ...................................................................................... 1 1.2 文獻回顧 ................................................................................................... 1 1.3 研究架構與流程 ...................................................................................... 3 第二章 研究方法 ............................................................................................. 6 2.1 分析單元及雨量因子選取 ...................................................................... 6 2.2 崩壞比分析............................................................................................... 9 2.3 降雨門檻值分析 ....................................................................................10 第三章 資料蒐集與處理 .............................................................................. 11 3.1 資料蒐集 ................................................................................................. 11 3.1.1 基本地形地質資料 ....................................................................... 11 3.1.2 SPOT 衛星影像 ..............................................................................13 3.1.3 雨量資料 .......................................................................................14 3.2 資料處理 .................................................................................................16 3.2.1 山崩判釋與檢核 ...........................................................................16 3.2.2 雨量資料處理與檢核 ...................................................................19 第四章 崩壞比曲線分析成果 ....................................................................22 4.1 地形地質均質區 – 高山區 ..................................................................23 4.1.1 研究區A ........................................................................................23 4.1.2 研究區B1, B2, B3 ........................................................................30 4.1.3 降雨門檻值 ...................................................................................42 4.2 地形地質均質區 – 阿里山區 ..............................................................42 4.2.1 研究區C1, C2, C3 ........................................................................42 4.2.2 研究區D1, D2 ...............................................................................55 4.2.3 降雨門檻值 ...................................................................................65 4.3 地形地質均質區 – 板岩區 ..................................................................65 4.3.1 研究區E1, E2................................................................................65 4.3.2 研究區F ........................................................................................77 4.3.3 研究區G ........................................................................................83 4.3.4 研究區H ........................................................................................89 4.3.5 研究區I .........................................................................................95 4.3.6 研究區J .......................................................................................101 4.3.7 降雨門檻值 .................................................................................107 4.4 地形地質均質區 – 變質岩區 ............................................................107 4.4.1 研究區K ......................................................................................107 4.4.2 降雨門檻值 ................................................................................. 114 第五章 討論 ................................................................................................... 115 5.1 降雨門檻值比較 .................................................................................. 115 5.1.1 全部研究區 ................................................................................. 115 5.1.2 各雨量因子 ................................................................................. 118 5.2 崩壞比曲線斜率比較 ..........................................................................125 5.2.1 地形地質均質區 – 高山區 .......................................................125 5.2.2 地形地質均質區 – 阿里山區 ...................................................127 5.2.3 地形地質均質區 – 板岩區 .......................................................129 5.2.4 全部研究區 .................................................................................131 5.3 線性一次迴歸解釋降雨門檻值之探討 ..............................................133 5.4 特殊降雨事件.......................................................................................135 5.5 崩塌災害警戒.......................................................................................135 第六章 結論與建議 .....................................................................................136 6.1 結論 .......................................................................................................136 6.2 建議 .......................................................................................................136 參考文獻 .........................................................................................................138 附錄一 衛星影像一覽表 ............................................................................141 附錄二 各雨量站時雨量歷線圖 ..............................................................152 附錄三 降雨事件山崩分布圖 ..................................................................177

    林美聆、陳天健、林鴻州、游文輝(2003)台北市崩塌警戒模式訂定方法
    之研究,中華水土保持學報,34(4),第 389-399 頁。
    林淑媛(2003)地形地質均質區劃分與山崩因子探討,國立中央大學應用
    地質研究所碩士論文,共140 頁。
    陳亦君(2004)颱風降雨對海岸山脈北段公路邊坡崩塌影響之研究,國立
    東華大學自然資源管理研究所,共79 頁。
    經濟部中央地質調查所(2008a)易淹水地區上游集水區地質調查與資料庫
    建置(第1 期96 年度)-集水區地質調查及山崩土石流調查與發生潛
    勢評估計畫,經濟部中央地質調查所,共208 頁。
    經濟部中央地質調查所(2008b)易淹水地區上游集水區地質調查與資料庫
    建置(第2 期97 年度)-集水區地質調查及山崩土石流調查與發生潛
    勢評估計畫(1/3),經濟部中央地質調查所,共579 頁。
    經濟部中央地質調查所(2009)易淹水地區上游集水區地質調查及資料庫
    建置(第2 期98 年度)-集水區地質調查及山崩土石流調查與發生潛
    勢評估計畫(2/3),經濟部中央地質調查所,共594 頁。
    經濟部中央地質調查所(2010)易淹水地區上游集水區地質調查及資料庫
    建置(第2 期99 年度)-集水區地質調查及山崩土石流調查與發生潛
    勢評估計畫(3/3),經濟部中央地質調查所,共365 頁。
    經濟部中央地質調查所(2011)易淹水地區上游集水區地質調查及資料庫
    建置(第3 期100 年度)-集水區地質調查及山崩土石流調查與發生潛
    勢評估計畫(1/3),經濟部中央地質調查所,共483 頁。
    趙衛君(2005)應用高斯過程建立分階式山區道路邊坡崩塌預測模式之研
    究-以阿里山公路為例,國立台灣科技大學營建工程研究所碩士論文,
    共151 頁。
    譚志豪、陳嬑璇、冀樹勇(2009)以定率法評估集水區山崩臨界雨量,中
    興工程季刊,105,第5-16 頁。
    Basistha, A., Arya, D. S., Goel, N. K. (2008) Spatial Distribution of Rainfall in
    Indian Himalayas - A Case Study of Uttarakhand Region, Water
    Resources Management, 22, 1325-1346.
    Caine, N. (1980) The rainfall intensity-duration control of shallow landslides
    and debris flows, Geografiska Annaler, 62A, 1/2, 23-27.
    Cannon, S. H., Ellen, S. D. (1985) Rainfall conditions for abundant debris
    avalanches San Francisco Bay region, California, California Geology,
    38(12), 267-272.
    Finlay, P. F., Fell, R., Maguire, P. K. (1997) The relationship between the
    probability of landslide occurrence and rainfall. Can. Geotech. F., 34,
    811-824.
    Govi, M., Mortara, G., Sorzara, P.F. (1985) Eventi idrologici e frane, Geological
    Apply Idrogeology, XX (II), 359-375.
    Guzzetti, F., Peruccacci, S., Rossi, M., Stark, C. P. (2008) The rainfall
    intensity-duration control of shallow landslides and debris flows: an
    update, Landslides, 5, 3-17.
    Fibson, R. W., Harp, E. L., Michael, F. A. (2000) A method for producing
    digital probabilistic seismic landslide hazard maps, Engineering Geology,
    58, 271–289.
    Larsen, M.C., Simon, A. (1993) A rainfall intensity-duration threshold for
    landslides in a humid-tropical environment, Puerto Rico, Geografiska
    Annaler, 75A, 1-2, 13-23.
    Lee, C. T., Pan, K. L., Lin, M. L. (2005) Research of landslide susceptibility
    analyses, Taiwan Central Geological Survey Open-File Report, 94-18,
    474.
    Lumb, P. (1975) Slope failure in Hong Kong, Quarterly Fournal of Engineering
    Geology, 8, 31–65.
    Polemic, M., Sdao, F. (1999) The role of rainfall in the landslide hazard: the
    case of the Avigliano urban area (Southern Apennines, Italy), Engineering
    Geology, 53, 297-309.
    Premchitt, F., Brand, E. W., Chen, P. Y. M. (1994) Rain-induced landslides in
    Hong Kong, Asia Engineer, Fournal of the Hong Kong Institution of
    Engineers, 43-51.
    Wieczorek, G. F. (1987) Effect of rainfall intensity and duration on debris flows
    in central Santa Cruz Mountains, California. In Debris Flows/Avalanches:
    Process, Recognition, and Mitigation, Costa FE, Wieczorek GF (eds),
    Reviews in Engineering Geology, Geological Society of America, 93-104.

    QR CODE
    :::