跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳廷維
Ting-Wei Chen
論文名稱: 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響
Optimized Surface Morphology and Photovoltaic Performance of the Perovskite Solar Cells with Additives Fabricated by Ultrasonic Spray Coating Technique
指導教授: 劉振良
Cheng-Liang Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 122
中文關鍵詞: 鈣鈦礦太陽能電池超音波噴塗
外文關鍵詞: Perovskite solar cells, Ultrasonic spray-coatiing
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機無機混合鈣鈦礦材料因可溶液製程及優異的光伏特性,被視為極具發展潛力的新型太陽能電池材料,而實驗室研究又以旋轉塗佈法製備元件居多,此種薄膜沉積模式較難應用於大面積薄膜塗佈及商業化連續製程,又因旋塗法所需前驅液濃度高造成較多的材料消耗,故本篇研究中將以可連續製程的超音波噴塗法於大氣環境下製備太陽能電池元件的主動層。在鈣鈦礦薄膜製備過程中先將不同比例的離子液體MAAc添加於鈣鈦礦前驅液內,並比較不同比例之MAAc對鈣鈦礦之結晶度、表面形貌及光伏特性關係,而最佳的添加比例為MAI:PbI2:MAAc=1:1:1.5,可使元件之光電轉換效率由10.04%提升至15.07%;接著使用光伏表現最出色的比例作為鈣鈦礦前驅液並進行小分子的添加,小分子INClDCDT-b8是透過反溶劑方式以含有不同濃度小分子之氯苯噴塗於鈣鈦礦濕膜當中,藉由反溶劑的作用影響鈣鈦礦長晶成膜過程以及小分子與鈣鈦礦間的作用提升元件的光伏表現及環境穩定度,在最適化濃度條件下可將光電轉換效率由單純氯苯作為反溶劑噴塗的15.39%提升至17.18%。


    The organic-inorganic hybrid perovskite solar cells (PSCs) have been expected to be the next applicable material due to its high photovoltaic performance and easy fabricating process. However, the most common solution process such as spin-coated method still has remained limitations like discontinuous fabrication process and large amount of wasting materials. In this research, the ultrasonic spray-coated method was demonstrated to fabricate the photo-active layer of PSCs under ambient condition. It is essential to fabricate the high quality with smooth perovskite thin film to achieve outstanding performance. The additive engineering is an effective strategy to improve the film morphology. For this purpose, we use the ionic-liquid MAAc and the small molecular INClDCDT-b8 as additives to achieve the goal. MAAc was added in the perovskite precursor to enhance the nucleation site and improve the film coverage which achieve the PCE of 15.07% compared to 10.04%. After optimized the ratio of MAAc, the INClDCDT-b8 was added in chlorobenzene through the anti-solvent method. The crystal structure and elements of the perovskite become more stable by means of the effect of the antisolvent and small molecular. Finally, the PCE can enhance up to 17.18% which compared to control device (chlorobenzene only) of 15.39%.

    摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 vii 表目錄 xii 第一章 緒論 1 1-1前言 1 1-2太陽能電池發展歷史及分類 2 1-3太陽能電池工作原理及特性 6 第二章 文獻探討 11 2-1 鈣鈦礦太陽能電池 11 2-1-1 鈣鈦礦發展歷史及現況 11 2-1-2 鈣鈦礦材料介紹 13 2-1-3 電池元件結構介紹 16 2-1-4 鈣鈦礦薄膜製程介紹 19 2-1-5溶液塗佈方法介紹 25 2-1-6 鈣鈦礦薄膜添加劑介紹 35 2-2實驗動機 54 第三章 實驗與研究方法 56 3-1 實驗藥品與溶劑 56 3-2 實驗儀器 57 3-2-1 元件製備儀器 57 3-2-2 元件量測儀器 58 3-2-3超音波噴塗系統 59 3-3 實驗步驟及方法 61 3-3-1 前驅液配置 61 3-3-2 鈣鈦礦太陽能電池元件製作 62 3-3-3鈣鈦礦太陽能電池元件量測方式 68 第四章 結果與討論 70 4-1 離子液體MAAc添加於鈣鈦礦前驅液之影響 70 4-2 含小分子INClDCDT-b8反溶劑添加於鈣鈦礦薄膜 82 第五章 結論 94 第六章 文獻整理 97

    [1] P. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448.
    [2] Y. Zhao, J. Wei, H. Li, Y. Yan, W. Zhou, D. Yu, Q. Zhao, Nat. Commun. 2016, 7, 10228.
    [3] Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang, A. K. Y. Jen, Adv. Energy Mater. 2015, 5, 1500328.
    [4] R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.-K. Wang, Y. Duan, L. Yang, Joule 2019, 3, 1464.
    [5] J. Y. Seo, T. Matsui, J. Luo, J. P. Correa‐Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, Adv. Energy Mater. 2016, 6, 1600767.
    [6] D. M. Chapin, C. Fuller, G. Pearson, J. Appl. Phys. 1954, 25, 676.
    [7] A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, J. Photonics Energy 2015, 5, 057402.
    [8] https://www.nrel.gov/pv/cell-efficiency.html, 2020.
    [9] D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L. J. A. Koster, Nat. Commun. 2015, 6, 7083.
    [10] J. Cubas, S. Pindado, C. De Manuel, Energies 2014, 7, 4098.
    [11] W. Van Sark, Photovoltaic System Design and Performance, Multidisciplinary Digital Publishing Institute, 2019.
    [12] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [13] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. J. S. r. Moser, Sci. Rep 2012, 2, 591.
    [14] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    [15] J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Energy Environ. Sci. 2013, 6, 1739.
    [16] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 982.
    [17] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
    [18] F. Zheng, L. Z. Tan, S. Liu, A. M. Rappe, Nano Lett. 2015, 15, 7794.
    [19] K. Yao, F. Li, Q. He, X. Wang, Y. Jiang, H. Huang, A. K.-Y. Jen, Nano Energy 2017, 40, 155.
    [20] W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai, X. Zhao, ACS Appl. Mater. Interfaces 2014, 6, 15959.
    [21] M. Liu, M. B. Johnston, H. J. J. N. Snaith, Nature 2013, 501, 395.
    [22] D. Liu, T. L. Kelly, Nat. Photonics 2014, 8, 133.
    [23] Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Nat. Energy 2016, 2, 16177.
    [24] L. M. Chen, Z. Hong, G. Li, Y. Yang, Adv. Mater. 2009, 21, 1434.
    [25] A. E. Labban, H. Chen, M. Kirkus, J. Barbe, S. Del Gobbo, M. Neophytou, I. McCulloch, J. Eid, Adv. Energy Mater. 2016, 6, 1502101.
    [26] S. S. Mali, H. Kim, H. H. Kim, S. E. Shim, C. K. Hong, Mater. Today 2018, 21, 483.
    [27] J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H. W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, Adv. Mater. 2015, 27, 4013.
    [28] W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurišić, W. K. Chan, Z. B. He, Adv. Energy Mater. 2017, 7, 1700722.
    [29] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
    [30] J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
    [31] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [32] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [33] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622.
    [34] N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 2015, 137, 8696.
    [35] D. Bi, A. M. El-Zohry, A. Hagfeldt, G. Boschloo, ACS Appl. Mater. Interfaces 2014, 6, 18751.
    [36] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang, Energy Environ. Sci. 2015, 8, 1544.
    [37] L. Meng, J. You, T.-F. Guo, Y. Yang, Acc. Chem. Res. 2016, 49, 155.
    [38] Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Nat. Energy 2018, 3, 560.
    [39] K. Hwang, Y. S. Jung, Y. J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. Y. Kim, D. Vak, Adv. Mater. 2015, 27, 1241.
    [40] B. Dou, J. B. Whitaker, K. Bruening, D. T. Moore, L. M. Wheeler, J. Ryter, N. J. Breslin, J. J. Berry, S. M. Garner, F. S. Barnes, ACS Energy Lett. 2018, 3, 2558.
    [41] D. Vak, K. Hwang, A. Faulks, Y. S. Jung, N. Clark, D. Y. Kim, G. J. Wilson, S. E. Watkins, Adv. Energy Mater. 2015, 5, 1401539.
    [42] F. Di Giacomo, S. Shanmugam, H. Fledderus, B. J. Bruijnaers, W. J. Verhees, M. S. Dorenkamper, S. C. Veenstra, W. Qiu, R. Gehlhaar, T. Merckx, Sol. Energy Mater. Sol. Cells 2018, 181, 53.
    [43] S. Han, H. Kim, S. Lee, C. Kim, ACS Appl. Mater. Interfaces 2018, 10, 7281.
    [44] W. C. Chang, D. H. Lan, K. M. Lee, X. F. Wang, C. L. Liu, ChemSusChem 2017, 10, 1405.
    [45] H. Ishihara, W. Chen, Y. C. Chen, S. Sarang, N. De Marco, O. Lin, S. Ghosh, V. Tung, Adv. Mater. Interfaces 2016, 3, 1500762.
    [46] J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im, J. Mater. Chem. A 2016, 4, 17636.
    [47] S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub, L. Etgar, J. Phys. Chem. C 2015, 119, 19722.
    [48] D. Vak, S.-S. Kim, J. Jo, S.-H. Oh, S.-I. Na, J. Kim, D.-Y. Kim, Appl. Phys. Lett. 2007, 91, 193301.
    [49] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley, D. G. Lidzey, Energy Environ. Sci. 2014, 7, 2944.
    [50] J. E. Bishop, C. D. Read, J. A. Smith, T. J. Routledge, D. G. Lidzey, Sci. Rep 2020, 10, 6610.
    [51] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
    [52] M. Ramesh, K. M. Boopathi, T.-Y. Huang, Y.-C. Huang, C.-S. Tsao, C.-W. Chu, ACS Appl. Mater. Interfaces 2015, 7, 2359.
    [53] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, ACS Photonics 2015, 2, 680.
    [54] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, D. G. Lidzey, Adv. Energy Mater. 2016, 6, 1600994.
    [55] B. Abdollahi Nejand, S. Gharibzadeh, V. Ahmadi, H. R. Shahverdi, J. Phys. Chem. C 2016, 120, 2520.
    [56] X. Xia, W. Wu, H. Li, B. Zheng, Y. Xue, J. Xu, D. Zhang, C. Gao, X. Liu, RSC Adv. 2016, 6, 14792.
    [57] J. Wang, J. Li, X. Xu, Z. Bi, G. Xu, H. Shen, RSC Adv. 2016, 6, 42413.
    [58] Z. Bi, Z. Liang, X. Xu, Z. Chai, H. Jin, D. Xu, J. Li, M. Li, G. Xu, Sol. Energy Mater. Sol. Cells 2017, 162, 13.
    [59] J. E. Bishop, D. K. Mohamad, M. Wong-Stringer, A. Smith, D. G. Lidzey, Sci. Rep 2017, 7, 7962.
    [60] L.-H. Chou, X.-F. Wang, I. Osaka, C.-G. Wu, C.-L. Liu, ACS Appl. Mater. Interfaces 2018, 10, 38042.
    [61] S. Ulicna, B. Dou, D. H. Kim, K. Zhu, J. M. Walls, J. W. Bowers, M. F. van Hest, ACS Appl. Energy Mater. 2018, 1, 1853.
    [62] J. E. Bishop, J. A. Smith, C. Greenland, V. Kumar, N. Vaenas, O. S. Game, T. J. Routledge, M. Wong-Stringer, C. Rodenburg, D. G. Lidzey, ACS Appl. Mater. Interfaces 2018, 10, 39428.
    [63] D.-H. Lan, S.-H. Hong, L.-H. Chou, X.-F. Wang, C.-L. Liu, J. Power Sources 2018, 390, 270.
    [64] T.-T. Duong, T.-D. Tran, Q.-T. Le, J. Mater. Sci.: Mater. Electron. 2019, 30, 11027.
    [65] J. Su, H. Cai, J. Yang, X. Ye, R. Han, J. Ni, J. Li, J. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 10689.
    [66] M. Park, W. Cho, G. Lee, S. C. Hong, M. c. Kim, J. Yoon, N. Ahn, M. Choi, Small 2019, 15, 1804005.
    [67] Z. Liang, Z. Bi, K. Gao, Y. Fu, P. Guan, X. Feng, Z. Chai, G. Xu, X. Xu, Appl. Surf. Sci. 2019, 463, 939.
    [68] Y.-S. Chou, L.-H. Chou, A.-Z. Guo, X.-F. Wang, I. Osaka, C.-G. Wu, C.-L. Liu, ACS Sustainable Chem. Eng. 2019, 7, 14217.
    [69] L.-H. Chou, Y.-T. Yu, X.-F. Wang, I. Osaka, C.-G. Wu, C.-L. Liu, Energy Technol. 2020, 8, 2000216.
    [70] X. Yu, X. Yan, J. Xiao, Z. Ku, J. Zhong, W. Li, F. Huang, Y. Peng, Y.-B. Cheng, J. Chem. Phys. 2020, 153, 014706.
    [71] S. Liu, Y. Guan, Y. Sheng, Y. Hu, Y. Rong, A. Mei, H. Han, Adv. Energy Mater. 2020, 10, 1902492.
    [72] T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, J. Mater. Chem. A 2017, 5, 12602.
    [73] Y. Zhao, K. Zhu, J. Am. Chem. Soc. 2014, 136, 12241.
    [74] Z. Xiao, D. Wang, Q. Dong, Q. Wang, W. Wei, J. Dai, X. Zeng, J. Huang, Energy Environ. Sci. 2016, 9, 867.
    [75] K. M. Boopathi, R. Mohan, T.-Y. Huang, W. Budiawan, M.-Y. Lin, C.-H. Lee, K.-C. Ho, C.-W. Chu, J. Mater. Chem. A 2016, 4, 1591.
    [76] M. Abdi‐Jalebi, M. I. Dar, A. Sadhanala, S. P. Senanayak, M. Franckevičius, N. Arora, Y. Hu, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel, Adv. Energy Mater. 2016, 6, 1502472.
    [77] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, Science 2016, 354, 206.
    [78] M. Jahandar, J. H. Heo, C. E. Song, K.-J. Kong, W. S. Shin, J.-C. Lee, S. H. Im, S.-J. Moon, Nano Energy 2016, 27, 330.
    [79] T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Energy Environ. Sci. 2017, 10, 2509.
    [80] J. Jin, H. Li, C. Chen, B. Zhang, L. Xu, B. Dong, H. Song, Q. Dai, ACS Appl. Mater. Interfaces 2017, 9, 42875.
    [81] D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, N.-G. Park, J. Am. Chem. Soc. 2018, 140, 1358.
    [82] W. Zhao, Z. Yao, F. Yu, D. Yang, S. Liu, Adv. Sci. 2018, 5, 1700131.
    [83] X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao, H. Li, H. Pan, Y. Shen, Y. Shao, L. Sun, Adv. Funct. Mater. 2018, 28, 1804286.
    [84] N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Nat. Energy 2019, 4, 408.
    [85] Y. Wu, L. Wan, S. Fu, W. Zhang, X. Li, J. Fang, J. Mater. Chem. A 2019, 7, 14136.
    [86] Z. Ma, Z. Xiao, W. Zhou, L. Jin, D. Huang, H. Jiang, T. Yang, Y. Liu, Y. Huang, J. Alloys Compd. 2020, 822, 153539.
    [87] C. Zuo, L. Ding, Nanoscale 2014, 6, 9935.
    [88] Y. Zhao, K. Zhu, J. Phys. Chem. C 2014, 118, 9412.
    [89] H. C. Liao, P. Guo, C. P. Hsu, M. Lin, B. Wang, L. Zeng, W. Huang, C. M. M. Soe, W. F. Su, M. J. Bedzyk, Adv. Energy Mater. 2017, 7, 1601660.
    [90] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
    [91] H. Zhang, M. Hou, Y. Xia, Q. Wei, Z. Wang, Y. Cheng, Y. Chen, W. Huang, J. Mater. Chem. A 2018, 6, 9264.
    [92] W. Fu, J. Wang, L. Zuo, K. Gao, F. Liu, D. S. Ginger, A. K.-Y. Jen, ACS Energy Lett. 2018, 3, 2086.
    [93] M. M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, S. M. Zakeeruddin, M. Grätzel, Adv. Energy Mater. 2019, 9, 1802646.
    [94] C. Li, J. Yin, R. Chen, X. Lv, X. Feng, Y. Wu, J. Cao, J. Am. Chem. Soc. 2019, 141, 6345.
    [95] X. Jia, L. Liu, Z. Fang, J. Mater. Chem. C 2019, 7, 7207.
    [96] C. Ji, C. Liang, H. Zhang, M. Sun, Q. Song, F. Sun, X. Feng, N. Liu, H. Gong, D. Li, ACS Appl. Mater. Interfaces 2020, 12, 20026.
    [97] C. Shen, Y. Wu, S. Zhang, T. Wu, H. Tian, W.-H. Zhu, L. Han, Sol. RRL 2020, 4, 2000069.
    [98] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, ACS Appl. Mater. Interfaces 2015, 7, 4955.
    [99] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
    [100] J. Yang, S. Xiong, T. Qu, Y. Zhang, X. He, X. Guo, Q. Zhao, S. Braun, J. Chen, J. Xu, ACS Appl. Mater. Interfaces 2019, 11, 13491.
    [101] a) L. Zuo, H. Guo, D. W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D. S. Ginger, B. Dunn, M. Wang, Sci. Adv. 2017, 3, e1700106; b) Y. Guo, K. Shoyama, W. Sato, E. Nakamura, Adv. Energy Mater. 2016, 6, 1502317.
    [102] C. Qin, T. Matsushima, T. Fujihara, C. Adachi, Adv. Mater. 2017, 29, 1603808.
    [103] M. Sun, F. Zhang, H. Liu, X. Li, Y. Xiao, S. Wang, J. Mater. Chem. A 2017, 5, 13448.
    [104] C. Fei, B. Li, R. Zhang, H. Fu, J. Tian, G. Cao, Adv. Energy Mater. 2017, 7, 1602017.
    [105] S. Wang, Z. Ma, B. Liu, W. Wu, Y. Zhu, R. Ma, C. Wang, Sol. RRL 2018, 2, 1800034.
    [106] C. Liu, Z. Huang, X. Hu, X. Meng, L. Huang, J. Xiong, L. Tan, Y. Chen, ACS Appl. Mater. Interfaces 2018, 10, 1909.
    [107] X. Li, C. C. Chen, M. Cai, X. Hua, F. Xie, X. Liu, J. Hua, Y. T. Long, H. Tian, L. Han, Adv. Energy Mater. 2018, 8, 1800715.
    [108] M. Qin, J. Cao, T. Zhang, J. Mai, T. K. Lau, S. Zhou, Y. Zhou, J. Wang, Y. J. Hsu, N. Zhao, Adv. Energy Mater. 2018, 8, 1703399.
    [109] Y. Ju, S. Y. Park, K. M. Yeom, J. H. Noh, H. S. Jung, ACS Appl. Mater. Interfaces 2019, 11, 11537.
    [110] X. Liu, J. Wu, Q. Guo, Y. Yang, H. Luo, Q. Liu, X. Wang, X. He, M. Huang, Z. Lan, J. Mater. Chem. A 2019, 7, 11764.
    [111] C. Song, X. Li, Y. Wang, S. Fu, L. Wan, S. Liu, W. Zhang, W. Song, J. Fang, J. Mater. Chem. A 2019, 7, 19881.
    [112] M. Azam, K. Liu, S. Yue, Y. Sun, D. Zhang, A. Hassan, Z. Wang, H. Zhou, S. Qu, Z. Wang, Sol. RRL 2019, 3, 1800327.
    [113] P. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu, D. Shchukin, B. Wei, H. Wang, J. Mater. Chem. A 2019, 7, 2497.
    [114] Y. Wu, Y. He, S. Li, X. Li, Y. Liu, Q. Sun, Y. Cui, Y. Hao, Y. Wu, J. Alloys Compd. 2020, 823, 153717.
    [115] M.-J. Choi, Y.-S. Lee, I. H. Cho, S. S. Kim, D.-H. Kim, S.-N. Kwon, S.-I. Na, Nano Energy 2020, 71, 104639.
    [116] S. Masi, N. Sestu, V. Valenzano, T. Higashino, H. Imahori, M. Saba, G. Bongiovanni, V. Armenise, A. Milella, G. Gigli, ACS Appl. Mater. Interfaces 2020, 12, 18431.
    [117] X. Shi, Y. Wu, J. Chen, M. Cai, Y. Yang, X. Liu, Y. Tao, M. Guli, Y. Ding, S. Dai, J. Mater. Chem. A 2020, 8, 7205.
    [118] C. Sun, Y. Guo, B. Fang, J. Yang, B. Qin, H. Duan, Y. Chen, H. Li, H. Liu, J. Phys. Chem. C 2016, 120, 12980.
    [119] Z. Huang, X. Hu, C. Liu, L. Tan, Y. Chen, Adv. Funct. Mater. 2017, 27, 1703061.
    [120] J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z. G. Zhang, Y. Li, S. Liu, Adv. Energy Mater. 2018, 1701757.
    [121] M. Kim, S. G. Motti, R. Sorrentino, A. Petrozza, Energy Environ. Sci. 2018, 11, 2609.
    [122] P. L. Qin, G. Yang, Z. w. Ren, S. H. Cheung, S. K. So, L. Chen, J. Hao, J. Hou, G. Li, Adv. Mater. 2018, 30, 1706126.
    [123] W. Chen, Y. Wang, G. Pang, C. W. Koh, A. B. Djurišić, Y. Wu, B. Tu, F. z. Liu, R. Chen, H. Y. Woo, Adv. Funct. Mater. 2019, 29, 1808855.
    [124] X. Li, W. Li, Y. Yang, X. Lai, Q. Su, D. Wu, G. Li, K. Wang, S. Chen, X. W. Sun, Sol. RRL 2019, 3, 1900029.
    [125] X. Li, W. Zhang, W. Zhang, H.-Q. Wang, J. Fang, Nano Energy 2019, 58, 825.
    [126] M.-C. Wu, Y.-Y. Li, S.-H. Chan, K.-M. Lee, W.-F. Su, Sol. RRL 2020, 4, 2000093.
    [127] Y. Zhao, P. Zhu, M. Wang, S. Huang, Z. Zhao, S. Tan, T. H. Han, J. W. Lee, T. Huang, R. Wang, Adv. Mater. 2020, 32, 1907769.
    [128] Q. Guo, F. Yuan, B. Zhang, S. Zhou, J. Zhang, Y. Bai, L. Fan, T. Hayat, A. Alsaedi, Z. a. Tan, Nanoscale 2019, 11, 115.
    [129] S.-S. Li, C.-H. Chang, Y.-C. Wang, C.-W. Lin, D.-Y. Wang, J.-C. Lin, C.-C. Chen, H.-S. Sheu, H.-C. Chia, W.-R. Wu, Energy Environ. Sci. 2016, 9, 1282.
    [130] a) P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Y. Jen, Adv. Mater. 2014, 26, 3748; b) L. Li, Y. Chen, Z. Liu, Q. Chen, X. Wang, H. Zhou, Adv. Mater. 2016, 28, 9862.
    [131] Y. Xia, C. Ran, Y. Chen, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, J. Wang, W. Huang, J. Mater. Chem. A 2017, 5, 3193.
    [132] D. T. Moore, K. W. Tan, H. Sai, K. P. Barteau, U. Wiesner, L. A. Estroff, Chem. Mater. 2015, 27, 3197.
    [133] M. Salado, F. J. Ramos, V. M. Manzanares, P. Gao, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, ChemSusChem 2016, 9, 2708.
    [134] Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Adv. Mater. 2017, 29, 1701073.
    [135] S. Venkatesan, M. Hasan, J. Kim, N. R. Rady, S. Sohal, E. Neier, Y. Yao, A. Zakhidov, J. Mater. Chem. C 2017, 5, 10114.
    [136] M. Shahiduzzaman, K. Yamamoto, Y. Furumoto, K. Yonezawa, K. Hamada, K. Kuroda, K. Ninomiya, M. Karakawa, T. Kuwabara, K. Takahashi, Org. Electron. 2017, 48, 147.
    [137] L. Liu, Z. Tang, C. Xin, S. Zhu, S. An, N. Wang, L. Fan, C. Wei, Q. Huang, G. Hou, ACS Appl. Energy Mater. 2018, 1, 2730.
    [138] R. Xia, Z. Fei, N. Drigo, F. D. Bobbink, Z. Huang, R. Jasiūnas, M. Franckevičius, V. Gulbinas, M. Mensi, X. Fang, Adv. Funct. Mater. 2019, 29, 1902021.
    [139] S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, Nature 2019, 571, 245.
    [140] C. Luo, G. Li, L. Chen, J. Dong, M. Yu, C. Xu, Y. Q. Yao, M. Wang, Q. L. Song, S. Zhang, Sustain. Energy Fuels 2020, 4, 3971.
    [141] S. Akin, E. Akman, S. Sonmezoglu, Adv. Funct. Mater. 2020, 30, 2002964.
    [142] D. S. Lee, J. Bing, J. Kim, M. A. Green, S. Huang, A. W. Ho-Baillie, Sol. RRL 2020, 4, 1900397.

    QR CODE
    :::