| 研究生: |
呂承澤 Cheng-Tse Lu |
|---|---|
| 論文名稱: |
電遷移誘發錫原子逆迴流通量與錫自身電遷移通量 於陰極銅/錫界面原子通量交互關係之研究 Study of interaction between electromigration-induced Sn back-filled atomic fluxes and Sn EM flux on EM-induced failure modes at Sn/Cu joint interface |
| 指導教授: |
劉正毓
Cheng-Yi Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 焊料 、電遷移 、電子封裝 、失效地圖 |
| 外文關鍵詞: | solder, electromigration, electronic packaging, failure-map |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今微電子構裝系統中,為容納更高密度的I/O(Input/Output)數目在高階IC晶片上,覆晶接點(flip-chip bumps)尺寸將大幅縮小至50 μm以下。如此,每個覆晶接點所承受的電流密度將會高達104 A/cm2或更高,進而造成電遷移效應誘發失效行為(electromigration-induced failure),此失效行為將嚴重IC晶片內覆晶接點之可靠度。因此,在此碩士論文中,於第三章,我們先利用一個基本的覆晶式銅/錫/銅銲點結構去探討錫原子逆迴流通量(JSn,back-filled)存在的成因以及銅箔消耗陰極介金屬消耗的演進過程,另外,我們也利用一特殊的T字形結構,設計出一嶄新的方式計算銅原子在銅錫介金屬中的有效碰撞係數(effective charge number, Z*Cu/Cu6Sn5)。 在第四章中,得到這些參數後,我們可以定量出電遷移誘發錫在錫的電遷移原子通量(JSn,EM)和錫原子逆迴流通量(JSn,back-filled.)。一旦,得到以上兩個錫原子通量,我們可以修改學長的陰極界面電遷移失效行為圖,於錫孔洞形成的區域,再增加此二通量的影響,去定義出嶄新的陰極界面電遷移失效行為圖。將(JSn,EM)和(JSn,back-filled.).做相等可以取得固定電流密度下的臨界溫度值(Tcrit.),再利用這些臨界溫度值去修改出陰極銅/錫界面電遷移誘發失效圖。 最後,我們建構出更可靠與正確的陰極界面電遷移失效行為圖。
Due to the number of the I/O (input/outout) counts in the advanced IC will continue to increase quickly; the diameter of flip-chip bumps will approach to 50 μm and below. The current density in each flip-chip bumps could reach 104 Amp/cm2 or higher. While the high density of current flowing through the flip-chip solder bumps, EM (electromigration)-induced failure has become a serious reliability issues for the solder joint. Hence, in this work, we will first propose a innovated concept of Sn back-filled phenomenon, and we will use this Sn back-filled flux (JSn,back-filled). Also, a new method of calculating Z* value of Cu in Cu6Sn5 has been proposed in Chapter 3. In Chapter 4, the entire EM-induced failure modes at the cathode Cu/Sn solder joint interface would be discussed in a great detail. In Chapter 4, we will introduce how to calculate the Sn back-filled flux (JSn,back-filled), and the Sn EM flux (JSn,EM). By knowing this two Sn back-filled flux (JSn,back-filled) and the Sn EM flux (JSn,EM), we can
modify the failure map constructed by Hua Wei. By equaling the JSn,back-filled and the JSn,EM, we can obtain the a critical temperature (Tcrit.) at a constant current density. Then, we can use various critical temperatures to plot a EM-induced failure map at the cathode Cu/Sn interface under EM effect. Finally, based on the concept of Sn back-filled flux and Sn EM flux, we can construct a more reliable and accurate plot of the EM failure behavior at the cathode Cu/Sn interface.
[1] A. Rahn (ed.), in The Basics of Soldering (John Wiely & Sons, New York, 1993).
[2] L. F. Miller, Proc. 31st IEEE Electron. Comp. Conf. (New York: IEEE, 1968), pp.52–56.
[3] V. C. Marcotte and N. G. Koopman, Proc. 31st IEEE Electron. Comp. Conf. (New York: IEEE, 1981), p. 157–162.
[4] S. J. Wang and C.Y. Liu, Journal of electronic materials, 32, 1303, (2003)
[5] C. E. Ho, S. C. Yang, C. R. Kao, J Mater Sci: Mater Electron, 18, 155, (2007).
[6] K. Zeng, K. N. Tu, Mater. Sci. Eng. R, 38, 55 (2002).
[7] J. Cannis, Green IC packaging, Adv. Packag., 8, 33, (2001).
[8] K. N. Tu, J. W. Mayer, L. C. Feldman, Electronic thin film science: for electrical engineers and materials scientists, (Prentice Hall, 1992), pp.355-368.
[9] D. Edenfeld, A. B. Kahng, M. Rodgers, Y. Zorian, International Technology Roadmap for Semiconductor, Semiconductor Industry Association, San Jose, CA, (2003).
[10] Y. H. Lin and C. R. Kao, J. Electron. Mater. 34, 27, (2005).
[11] S. Brandenburg and S. Yeh, Surface Mount International Conference and Exposition, SMI 98 Proceedings (1998), p. 337.
[12] W. J. Choi, E. C. C. Yeh, K. N. Tu, J. Appl. Phys., 94, 5665, (2003).
[13] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544, (2003).
[14] “Lead-Free Solder Project Final Report”, NCMS Report 0401RE96, Ann Arbor, MI, August (1997).
[15] B. P. Richards, C. L. Levoguer, C. P. Hunt, K. Nimmo, S. Peters, and P. Cusack, “An Analysis of The Current Status of Lead-Free Soldering”, British Department of Trade and Industry Report, April (1999).
[16] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, Jin Yu, and W. K. Choi, JOM, 56, 34, (2004).
[17] H. K. Kim and K. N. Tu, Phys. Rev. B, 53, 16027, (1996).
[18] 1. K. N. Tu, Solder joint technology: materials, properties, and reliability (Springer Science, Business Media, New York, (2007).
[19] Y. C. Chan and D. Yang, Prog. Mater. Sci., 55, 428 (2010).
[20] K. Zeng and K. N. Tu, Mater. Sci. Eng. R, 38, 55 (2002).
[21] M. H. R. Jen, L. C. Liu, and Y. S. Lai, Microelectron. Reliab., 49, 734 (2009).
[22] H. W. Tseng, C. T. Lu, Y. H. Hsiao, P. L. Liao, Y. C. Chuang, T. Y. Chung, and
[23] C. Y. Liu, Microelectron Reliab., 50, 1159 (2010).
[24] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[25] M. Ding, G. T. Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, J. Appl. Phys., 99, 094906 (2006).
[26] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, Acta. Mater., 55, 2805 (2007).
[27] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J.Wang, J. Appl. Phys., 100, 083702 (2006).
[28] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544 (2003).
[29] C. T. Lin, Y. C. Chuang, S. J. Wang, and C. Y. Liu, Appl. Phys. Lett., 89, 101906
(2006).
[30] D.Ma, W. D. Wang, and S. K. Lahiri, J. Appl. Phys., 91, 3312 (2002).
[31] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[32] 曾華偉, “電遷移誘發錫/銅界面(錫,銅)原子通量之交互關係及其對錫/銅銲點電遷移失效機制影響研究”, 國立中央大學 化學工程與材料工程所, 博士論文, (2011).
[33] Y. C. Hu, Y.H. Lin, C.R. Kao, J. Mater. Res. 18, No. 11(2003).
[34] C. Y. Liu, J. T. Chen, Y. C. Chuang, L. Ke, S. J. Wang, Appl. Phys. Lett. 90,
112114 (2007).
[35] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J.Wang, J. Appl. Phys., 100, 083702 (2006).
[36] H. Gan and K. N. Tu, J. Appl. Phys., 97, 063514 (2005).
[37] S. Ou and K. N. Tu, IEEE. Proc. ECTC 55th., 2, 1445 (2005).
[38] Z. Mei, A. J. Sunwoo, and J. W. Morris Jr., Metall. Trans. A, 23A, 857 (1992).
[39] 莊曜群, “銅覆晶墊層銲點界面之電遷移失效模式研究”, 國立中央大學 化學工程與材料工程所, 博士論文, (2008).
[40] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys., 100, 083702, (2006).
[41] C. T. Lin, Y. C. Chuang, S. J. Wang, and C. Y. Liu, Appl. Phys. Lett., 89, 101906, (2006).
[42] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, J. Mater. Res., 18, 2544, (2003).
[43] M. Ding, G. Wang, B. Chao, P. S. Ho, P. Su, T. Uehling, J. Appl. Phys., 99, 094906, (2006).
[44] H. W. Tseng, Y. T. Yeh, K. Y. Lin, and C. Y. Liu, Electrochem. Solid State Lett., 12, H445, (2009).
[45] J. H. Lee and Y. B. Park, J. Electron. Mater., 38, 2194, (2009).
[46] Y. H. Hsiao, H. W. Tseng, and C. Y. Liu, J. Electron. Mater., 38, 2573, (2009).
[47] Y. Alfred, E. Bernd, L. Charles, Microelectron. Reliab., 48, 1847, (2008).
[48] L. Xu, J. K. Han, J. J. Liang, K. N. Tu, Y. S. Lai, Appl. Phys. Lett., 92, 262104, (2008).
[49] W. H. Wu, H. L. Chung, C. N. Chen, C. E. Ho, J. Electron. Mater., 38, 2563, (2009).
[50] 廖珮嵐, “Cu-Sn-Cu覆晶結構之陰極銅箔消耗與電遷移失效模式”, 國立中央大學 化學工程與材料工程所, 碩士論文, (2007).
[51] Y. C. Chan and D. Yang, Prog. Mater. Sci., 55, 428, (2010).
[52] C. Y. Liu, Chih Chen, K. N. Tu, J. Appl. Phys., 88, 5703, (2000).
[53] Khosla A, Huntington HB. J Phys Chem Solids, 36,395, (1975).