跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張仁憲
Jen-Hsien Chang
論文名稱: 利用田口法優化LED路燈散熱鰭片之研究
The study for optimization of LED stree light heat sink by using Taguchi Methods
指導教授: 張榮森
Rong -Seng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: COMSOL Multiphysics田口實驗計畫法直交表
外文關鍵詞: heat, COMSOL Multiphysics, Taguchi method, orthogonal arrays
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在採用田口實驗計畫法前,本研究參數設計必須採用五個合適的設計參數,分別是鰭片的數目、鰭片的厚度、鰭片的高度、散熱鰭片基底厚度、表面輻射材質等5個可控制因子,每個因子分別有4個水準做參數設計,以降低LED路燈之最高溫度。
     選用田口實驗計畫法中的L16(45) 直交表來設定各組參數值,並利用COMSOL Multiphysics模擬軟體實際模擬,將會取得16組模擬結果,再將模擬結果放入直交表中,利用直交表的設計和變異數的分析,找出實驗中主要效應因子為何,以及各個控制因子對回應值的關係,將1024次模擬簡化為16次,讓設計者在較短的時間內即可獲得較佳的設計參數。
      初始設計之模擬可得狀況之最高溫度為48.817℃;利用田口實驗計畫之望小特性分析計算後,所得預測最佳設計參數利用COMSOL Multiphysics模擬,可得預測最佳設計參數狀況之最高溫度為37.321℃,鰭片最高溫度獲得明顯下降。本研究確實減少散熱鰭片的開發時間與設計成本,希望對LED路燈散熱設計有所幫助。


    Before executing Taguchi method, we must estab¬lish the five parameters such as the number of fins and the fin thickness, the fin height, the fin thickness of substrate, the radiation material on surface. First, the above five parameters must be determined. Next, these parameters are divided into four levels separately in order to reduce the maximum temperature of LED street light .
    This research using Taguchi Method makes the optimization of LED street light heat sink easier whereas the simulation times of the 5 parameters and the 4 levels of each parameter will be in total 1024 times. We establish a product that can effectively re¬duce simulation times to 16. The maximum temperature of LED street light is lower than all of probable combination exactly.
    The original design of heat sink without optimization by Taguchi method, the maximum temperature of heat sink is 48.817℃. With the optimal optimization design we can reach the maximum temperature is 37.321℃,the temperature of sink is significantly decreased. Moreover the optimization by Taguchi method design can get the best construction in a short time. Therefore, this research for the cooling components decreases development time and the cost of production. We believe this research will be helpful for thermal design of LED street light.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究動機與文獻回顧 1 1.2 論文貢獻 4 1.3 論文架構 6 第二章 基礎理論 7 2.1 熱傳導理論 7 2.1.1 熱傳導(thermal conduction) 7 2.1.2 熱對流(thermal convection) 9 2.1.3 熱輻射(thermal radiation) 10 2.2 田口實驗計畫法 11 2.2.1 田口實驗計劃法之簡介 13 2.2.2 參數設計 16 2.2.3 直交表 18 2.2.4 信號雜音(S/N)比 21 2.3 有限元素分析法 24 第三章 研究方法 25 3.1 參數設計步驟 25 3.2 LED路燈結構 26 3.2.1 LED路燈散熱鰭片初始設計模擬 28 3.3 選擇直交表並配置控制因子與水準數 30 3.3.1 散熱鰭片大小設計 30 3.3.2 表面輻射材質 31 第四章 研究結果 33 4.1 以田口實驗計畫法建立模擬模型 33 4.2 田口實驗計畫法建立模擬模型模擬結果 34 4.3 計算各控制因子之信號雜音(S/N)比 59 4.4 計算各控制因子與溫度之間關係 62 4.5 田口實驗計畫法預測之最佳組合 65 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 72

    [1] Jeff Y. Tsao,“Solid-state Lighting Lamps, Chips, and Materials for Tomorrow”, IEEE Circuit & Devices Magazine, vol. 20, issue 3, pp. 28~37, (2004).
    [2] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As 1-x P x ) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [3] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlInGaP visible light emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
    [4] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InAlGaP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. 58, 1010-1012 (1991).
    [5] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys. 76, 8180-8191 (1994).
    [6] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Jpn. J. Appl. Phys. 34, L1332-L1335 (1995).
    [7] Jeong Park and Chin C. Lee, “An Electrical Model With Junction Temperature for Light-Emitting Diodes and the Impact on Conversion Efficiency”, IEEE Electron Device Letters, vol. 26, no. 5, pp. 308~310, (2005).
    [8] Eugene Hong and Nadarajah Narendran, “A Method for Projecting Useful Life of LED Lighting Systems”, Third International Conference on Solid State Lighting, Proceedings of SPIE, vol. 5187, pp. 93~99, (2004).
    [9] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [10] Nadarajah Narendran and Yimin Gu, “Life of LED-Based White Light Sources”, IEEE/OSA Journal of Display Technology, vol. 1, no. 1, pp. 167~171, (2005).
    [11] 許正達, ”奈米材料應用在導熱技術設計與量測”, 國立中央大學光電科學與工程學系碩士論文,(2009)。
    [12] 李冠賢,”垂直放置鰭片之自然對流熱傳性能實驗研究 ”,國立中央大學機械工程學系碩士論文,(2010)。
    [13] 李輝煌,「田口方法品質設計的原理與實務」,高立圖書,民國 89年 8 月。
    [14] 蘇朝墩,「產品穩健設計」,中華民國品質學會發行,民國 86 年8 月。
    [15] S. H. Park, Robust Design and Analysis for Quality Engineering, Chapman & Hall, pp. 25-58, (1996).
    [16] Incropera DeWitt 原著,侯順雄、王松浩、張仲卿譯者,「熱 傳遞」,高立圖書,民國 96年 10 月。
    [17] 林志勳, ”應用田口法開發LED燈具設計”, 國立中央大學光電科學與工程學系碩士論文,(2009)
    [18] Aibara, T., “Natural Convective Heat Transfer in Vertical Parallel Fins of Rectangular Profiles,” The Japan Society of Mechanical Engineers (JSME), Vol. 34, (1968).Quoted in Yeh, L.T.,Chu,R.C.,Thermal Management of Microelectronic Equipment, ASME Press, New York, (2002).
    [19] Güvenç,A.,and Yüncü, H.,“AnExperimental Investigation on Performance of Fins on a Horizontal Base in Free Convection Heat Transfer,” Heat and Mass Transfer, Vol. 37, pp. 409-416, (2001).
    [20] Ostrach, S., “An Analysis of Laminar Free Convection Flow and Heat Transfer about a Flat Plate Parallel to the Direction of the Generating Body Force,” National Advisory Committee for Aeronautics, Report 1111, (1953).
    [21] Elenbaas, W., “Heat Dissipation of Parallel Plates by Free Convection,” Physica, Vol. 9, No. 1, pp. 1-28, (1942). Quoted in Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat Mass Transfer, 4thed., John Wiley & Sons, New York, (2002).
    [22] Harahap, F., and Setio, D., “Correlations for Heat Dissipation and Natural Convectio Heat-Transfer From Horizontally-Based, Vertically-Finned Arrays,” Applied Energy, Vol. 69, pp. 29-38, (2001).
    [23] Bar-Cohen, A., and Rohsenow, W. M., “Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates,” Journal of Heat Transfer, Vol. 106, pp. 116-123, (1984).

    QR CODE
    :::