| 研究生: |
蔡孟庭 Meng-ting Tsai |
|---|---|
| 論文名稱: |
智慧型錯誤容忍控制六相永磁同步馬達驅動系統之開發 Development of Intelligent Fault Tolerant Control for Six-Phase Permanent Magnet Synchronous Motor Drive System |
| 指導教授: |
林法正
Faa-jeng Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 互補式滑動模態控制 、六相永磁同步馬達 、非對稱歸屬函數之TSK型模糊類神經網路 、數位訊號處理器 、錯誤容忍控制 |
| 外文關鍵詞: | complementary sliding-mode control, Takagi-Sugeno-Kang type fuzzy neural network wit, Six-phase permanent magnet synchronous motor, fault tolerant control, digital signal processor |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究的目的是研製與發展以數位訊號處理器為基礎之智慧型錯誤容忍控制六相永磁同步馬達驅動系統,其適用於電動載具及電動機需持續運轉之特殊應用場合。六相永磁同步馬達驅動系統為高度非線性之系統,且對於系統參數變化和外來干擾相當敏感,尤其是發生馬達繞組斷線或是反流器故障時,不平衡電流將使馬達轉矩抖動,導致馬達無法平順運轉,故提出錯誤偵測與運轉決策判斷方法,以防止馬達造成進一步擴大毀損。然而系統穩定性與錯誤容忍控制為六相永磁同步馬達驅動控制系統最重要的發展議題,因此本論文提出以下兩種智慧型控制系統:非對稱歸屬函數之TSK型模糊類神經網路控制器和智慧型互補式滑動模態控制器,以改善控制性能,且達到錯誤容忍控制六相永磁同步馬達驅動系統之穩定性要求。本論文將詳細介紹智慧型控制的架構以及線上學習法則,最後以DSP (TMS320F28335)實現六相永磁同步馬達驅動系統,並且以實驗結果驗證所提出方法之可行性。
The objective of this thesis is to develop and implement a digital signal processor (DSP) based fault tolerant control of six-phase permanent magnet synchronous motor (PMSM) drive system. This system is suitable for industrial applications such as mechanical tools, electric vehicles and some specific applications. The six-phase PMSM drive system is highly nonlinear and is very sensitive to parameter variations and external disturbance. When the motor winding or the respective inverter is broken, the torque fluctuation will appear due to unbalanced current and the motor will operate under non-smooth situation. Therefore, the fault detection and operating decision method is proposed in the thesis to prevent serious broken. Since, the stability and the fault tolerant control are the most important issues of the six-phase PMSM drive and control system, therefore, two intelligent control systems, which can improve the control performance and the requirements of stability of fault tolerant control of six-phase PMSM drive system, are proposed: a Takagi-Sugeno-Kang type fuzzy neural network with asymmetric membership function (TSKFNN-AMF) controller and an intelligent complementary sliding-mode controller (ICSMC). The network structure and the online learning algorithms of the intelligent controller are introduced in detail. Moreover, the proposed control systems are implemented in a TMS320F28335 DSP to verify the feasibility of the proposed control schemes.
[1] Haddoun A., Benbouzid M.E.H., Diallo D., Abdessemed R., Ghouili J., Srairi K.: ‘Modeling, analysis, and neural network control of an EV electrical differential’, IEEE Trans. Indust. Electron., 2008, 55, (6), pp. 2286-2294
[2] Huang Q., Huang Z., Zhou H.: ‘Nonlinear optimal and robust speed control for a light-weighted all-electric vehicle’, IET Control Theory Appl., 2007, 3, (4), pp. 437-444
[3] Chen B.C., Yu C.C., Lee W.S., Hsu W.F.: ‘Design of an electric differential system for three-wheeled electric welfare vehicles with driver-in-the-loop verification’, IEEE Trans. Vehicular Tech., 2007, 56, (4), pp. 1498-1505
[4] Hori Y.: ‘Future vehicle driven by electricity and control—research on four-wheel-motored “UOT Electric March II”’, IEEE Trans. Indust. Electron., 2004, 51. (5), pp. 954-962
[5] 王俊超,”六相永磁式同步電動機驅動器之分析與設計”,碩士論文,台灣科技大學電機研究所,民國九十四年。
[6] 許尚文,”六相永磁式同步電動機之設計與控制”,碩士論文,台灣科技大學電機研究所,民國九十五年。
[7] 吳泰廷,”六相永磁式同步電動機驅動系統之故障後控制策略”,碩士論文,台灣科技大學電機研究所,民國九十八年。
[8] 劉建村,”六相永磁式同步電動機設計及故障後控制策略,國立台灣科技大學電機研究所碩士論文”,民國九十八年。
[9] 黃治瑋,”應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統”,國立中央大學電機工程研究所碩士論文,民國九十九年。
[10] 劉昌煥,交流電機控制,東華書局,民國92。
[11] N. Mahan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications, and Design. New York: John Willy & Sons, 1995.
[12] B. K. Bose, Power Electronic and AC Drivers. New Jersey: Prentice-Hall,
1989.
[13] Hadiouche, D.; Baghli, L.; Rezzoug, A.: ‘Space-vector PWM techniques for dual three-phase AC machine: analysis, performance evaluation, and DSP implementation’, IEEE Trans. Industry Applications, 2006, 42, (4), pp.
1112 -1122
[14] Yun Wei Li; Bin Wu; Xu, D.; Zargari, N.R.: ‘Space Vector Sequence Investigation and Synchronization Methods for Active Front-End Rectifiers in High-Power Current-Source Drives’, IEEE Trans. Industry Applications, 2008, 55, (3), pp. 1022-1034
[15] van der Broeck, H.W.; Skudelny, H.-C.; Stanke, G.V.: ‘Analysis and realization of a pulsewidth modulator based on voltage space vectors’, IEEE Trans. Industry Applications, 1988, 24, (1), pp. 142-150
[16] 林法正,魏榮宗,”電機控制”,滄海書局,民國九十一年。
[17] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to improve the reliability of PWM inverter drives,” IEEE Trans. Indust. Appl., vol. 26, no. 1, pp. 143-150, 1990.
[18] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase induction motor with third harmonic current injection,” IEEE Trans. Indust. Appl., vol. 38, no. 5, pp. 1351-1360, 2002.
[19] H. Zhang, A. Jouanne, S. Dai, K. Wallace and F. Wang, “Multilevel inverter modulation schemes to eliminate common-mode voltages,” IEEE Trans. Indust. Appl., vol. 36, no. 6, pp. 1645-1653, 2000.
[20] R. Bojoi, M. Caponet, G. Grieco, M. Lazzari, A. Tenconi, and F. Profumo, “Computation and measurements of the DC link current in six-phase voltage source PWM inverters for AC motor drives,” Proceedings of the Power Conversion Conference, vol. 3, pp. 953-958, 2002.
[21] A. Brazhinkov and N. Dovzhenko, “Control potentials and advantages of multiphase AC drives,” 29th Annual IEEE Power Electronics Specialists Conference, vol. 2, pp. 2108-2114, 1998.
[22] R. Kianinezhad, B. Nahid-Mobarakeh, L. Baghli, F. Betin and G. Capolino, “Modeling and control of six-phase symmetrical induction machine under fault condition due to open phases,” IEEE Trans. Indust. Appl., vol. 55, no. 5, pp. 1966-1977, 2008.
[23] M. A. Fnaiech, F. Betin, G. Capolino and F. Fnaiech, “Fuzzy logic and sliding-mode controls applied to six-phase induction machine with open phases,” IEEE Trans. Indust. Appl., vol. 57, no. 1, pp. 354-364, 2010.
[24] S. Green, D. J. Atkinson, A. G. Jack, B. C. Mecrow and A. King, “Sensorless operation of a fault tolerant PM drive,” IEE Proc. Electr. Power Appl., vol. 150, no. 2, pp. 117-125, 2003.
[25] B. Stumberger, G. Stumberger, A. Hamler, M. Trlep, M. Jesenik and V. Gorican, “Increasing of output power capability in a six-phase flux-weakened permanent magnet synchronous motor with a third harmonic current injection,” IEEE Trans. Magnet., vol. 39, no. 5, pp. 3343-3345, 2003.
[26] H. Zhu, X. Xiao and Y. D. Li, “Permanent magnet synchronous motor current ripple reduction with harmonic back-EMF compensation,” International Conference on Electrical Machines and Systems, pp. 1094-1097, 2010.
[27] D. Sun and J. Meng, “Research on fault tolerant inverter based permanent magnet synchronous motor direct torque control drives,” IEEE Conference on Industrial Electronics and Applications, pp. 1-5, 2006.
[28] Y. Izumikawa, K. Yubai and J. Hirai, “Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer,” IEEE/ASME Trans. Mechatronics, vol. 10, no. 4, pp. 391-396, 2005.
[29] M. E. H. Benbouzid, D. Diallo and M. Zeraoulia, “Advanced fault-tolerant control of induction-motor drives for EV/HEV traction applications: from conventional to modern and intelligent control techniques,” IEEE Trans. Vehicu. Techn, vol. 56, no. 2, pp. 519-528, 2007.
[30] M. Naidu, S. Gopalakrishnan and T. W. Nehl, “Fault-tolerant permanent magnet motor drive topologies for automotive X-By-Wire systems,” IEEE Trans. Indust. Appl., vol. 46, no. 2, pp. 841-848, 2010.
[31] L. X. Wang, A course in fuzzy systems and control. Prentice-Hall Press, 1997.
[32] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3872-3879, 2009.
[33] T. Orlowska-Kowalska, M. Dybkowski and K.Szabat, “Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors,” IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 553-564, 2010.
[34] F. J. Lin, P. H. Shieh and P. H. Chou, “Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 672-692, 2008.
[35] A. Gajate, R. E. Haber, P. I. Vega and J. R. Alique, “A transductive neuro-fuzzy controller: application to a drilling process,” IEEE Transactions on Neural Networks, vol. 21, no. 7, pp. 1158-1167, 2010.
[36] Y. Gao and M. Joo, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, pp. 462-477, 2003.
[37] C. J. Lin and C. C. Chin, “Prediction and identification using wavelet-based recurrent fuzzy neural networks,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 5, pp. 2144-2154, 2004.
[38] H. Y. Pan, C. H. Lee, F. K. Chang and S. K. Chang, “Construction of asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proceedings International Conference Machine Learning and Cybernetics, pp. 2024-2030, 2007.
[39] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric Gaussian membership functions,” IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1528-1536, 2004.
[40] C. H. Lee, T. W. Hu, C. T. Lee and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proceedings IEEE Conference Fuzzy Systems, pp. 1496-1502, 2008.
[41] F. Y. Chang and C. H. Lee, “Interval type-2 recurrent fuzzy neural system with asymmetric membership functions for chaotic system identification,” in Proceedings SICE Annual Conference, pp. 256-260, 2010.
[42] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, NJ, 1991.
[43] V. I. Utkin, “Sliding-mode control design principles and applications to electric drives,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, 1993.
[44] C. K. Lai and K. K. Shyu, “A novel motor drive design for incremental motion system via sliding-mode control method,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 449-507, 2005.
[45] H. M. Chen, J. P. Su, and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Trans. Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[46] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” Int. J. Control, vol. 75, no. 5, pp. 360-368, 2002.
[47] TMS320F28335,TMS320F28334,TMS320F28332,TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs)
Data Manual, Texas Instruments, June 2007.
[48] SPECTRUM DIGITAL, http://www.spectrumdigital.com
[49] Texas Instruments, AM26LS32ACN datasheet.
[50] Microchip, MCP4922 datasheet.
[51] 洪英智,”以FPGA為基礎之類神經網路控制線型超音波馬達”,碩士論文,東華大學電機研究所,民國九十七年。
[52] F. J. Lin and Y. C. Hung, “FPGA-based Elman neural network control system for linear ultrasonic motor,” IEEE Trans. Ultra. Ferro. Freq. Control, vol. 56, no. 1, pp. 101-113, 2009.
[53] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice-Hall, 1991.
[54] H. M. Chen, J. P. Su, and J. C. Renn, “A novel sliding mode control of an electrohydraulic position servo system,” IEICE Transections on Fundamentals, vol. E85-A, no. 8, pp. 1928-1936, 2002.
[55] J. P. Su and C. C. Wang, “Complementary sliding control of non-linear system,” International Journal of Control, vol. 75, no. 5, pp. 360-368, 2002.
[56] H. M. Chen, J. C. Renn, and J. P. Su, “Sliding mode control with varying boundary layers for an electro-hydraulic position servo system,” International Journal of Advanced Manufacturing Technology, vol. 26, pp. 117-123, 2005.
[57] Huang Q., Huang Z., Zhou H.: ‘Nonlinear optimal and robust speed control for a light-weighted all-electric vehicle’, IET Control Theory Appl., 2007, 3, (4), pp. 437-444
[58] Larminie J., Lowry J.: ‘Electric vehicle technology explained’ (John Wiley & Sons, Ltd, 2003)
[59] Lin F.J., Wai R.J., Chen H.P.: ‘A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller’, IEEE Trans. Energy Conver., 1998, 13, (4), pp. 319-325