跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許靜宜
Ching-Yi Hsu
論文名稱: 港口貨櫃作業下多載量AGV派車問題
The Multiple-Load AGV Dispatching Rules on Container Terminal
指導教授: 何應欽
Ying-Chin Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 95
語文別: 中文
論文頁數: 134
中文關鍵詞: 無人搬運車電腦模擬載取派車法則貨櫃運輸
外文關鍵詞: Computer Simulation, Container Terminal, Pick-Up Dispatching Rules, Multiple-Load AGV
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 貨櫃化運輸是目前國際貿易最主要的運輸方式,隨著進出口交易量的增加,每艘船的貨櫃可載量皆趨近於滿載。為了應付更多的進出口交易,如何能使各港口有效率的運作,例如貨櫃卸載作業、貨櫃運送或是貨櫃裝載作業等有效率且快速的被執行,進而增加港口船舶週轉率是一項重要的課題。
    一套高效率的自動化物料搬運系統,除了可以節省人工作業成本外,更可以有效的提高系統效率,自動化物料搬運系統又以AGV系統為最常見的自動化搬運設備。在過去,將AGV應用於製造系統中已有廣泛的探討,包括不同的派車法則、車輛數評估、路徑規劃等,而將AGV應用於港口貨櫃搬運作業的討論較少,僅有部份學者探討有關單載量AGV的應用,然而在實務上AGV因貨櫃尺寸大小的不同,可能會是單載量或是多載量。
    因此,本研究在港口貨櫃搬運作業自動化的環境下,發展出不同的第一載取派車法則與第二載取派車法則,期望以此派車法則並經由模擬實驗求出可最小化AGV服務一艘船的時間,使得船舶停靠在港口的時間變短,因而提高港口船隻週轉率。
    本研究所發展出的法則主要可分為下列這兩部份:
    1.第一載取派車法則
    指當AGV狀態為空車且要執行載取貨櫃的動作時,其所選擇要去哪一台Quay Crane進行載取的法則。
    2.第二載取派車法則
    指的是當AGV載運第一個20呎貨櫃後,為使AGV能達到滿載,當Quay Crane發出需要AGV前往載運的宣告中有20呎貨櫃時,其所選擇要去哪一Quay Crane作業區載取的法則。
    本研究在不同貨櫃比例與AGV台數搭配下,針對這兩部份法則互相搭配,並利用模擬程式進行模擬,進而驗證出哪些法則組合的績效較好。


    The research of this thesis focus on multiple-load AGV dispatching rules on container terminal. Over the past years, the international trade amount of containers have increased year by year which leaded to enhance efficiency and the turnover rate at seaport . Our purpose is to minimize the total time that AGVs service a ship. AGVs are means for horizontal transport of containers between Quay Crane operation area and Stacking Crane operation area.
    In this thesis, the proposed control strategy divides the multiple-load AGV control dispatching problem into two, the first pick-up dispatching rules and second pick-up dispatching rules. The first pick-up dispatching rules determines AGV should go to which Quay Crane for loading container when it is empty. The second pick-up dispatching rules then determines which Quay Crane that should to service after AGV had loaded a 20ft container.
    Finally, we use simulation programming (Arena 10.0) to analyze the performance such as AGV total service time, Quay Crane average waiting time, AGV average waiting time and difference of different AGV dispatching rules.

    目錄 I 圖目錄 II 表目錄 IV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 研究環境與假設 4 1.4 研究文架構方法與論 5 第二章 文獻回顧 7 2.1 AGV系統之派送問題 7 2.2 AGV系統之路徑規劃與佈置問題 12 2.3 港口貨櫃作業環境下的單載量AGV控制問題 16 2.4 港口貨櫃作業環境下的多載量AGV控制問題 17 第三章 研究方法架構 19 3.1 問題分析 19 3.2 環境描述 20 3.3 港口貨櫃作業多載量AGV裝載流程 23 3.4 港口貨櫃作業多載量AGV選擇作業之控制策略 25 3.4.1第一載取派車法則 25 3.4.2第二載取派車法則 29 第四章 模擬實驗設計與分析 35 4.1實驗環境與假設 35 4.2 模擬實驗設計 37 4.3 統計分析與實驗結果 39 4.3.1 ANOVA之前提假設 39 4.3.2 總完成時間統計分析 41 4.3.3 Quay Crane平均等待時間分析 54 4.3.4 AGV平均等待時間分析 69 第五章 結論與建議 85 5.1 結論 85 5.2 後續研究建議 86 參考文獻 87 附錄 90

    [1]Bartholdi, J. J., and Platzman, L. K., 1989“Decentralised control of automated guided vehicles on a simple loop”, IIE Transactions, Vol.21, No.1, pp.76-81
    [2]Bish, E. K., Chen, F. K., Leong, Y. T., Nelson, B. L., Cheong, J. W., and Simchi, D., 2005, “Dispatching vehicles in a mega container terminal”, OR Spectrum, Vol.27, No.4, pp.491-506
    [3]Bozer, Y. A., and Srinivasan, M. M., 1989, “Tandem configurations for AGV systems offer simplicity and flexibility”, Material Handling System, Vol.21, No.2, pp.23-27
    [4]Briskorn, D., Drexel, A., and Hartmann, S., 2006, “Inventory-based dispatching of automated guided vehicles on container terminals”, OR Spectrum, Vol.28, No.4, pp.611-630
    [5]Egbelu, P. J., and Tanchoco, J. M. A., 1984, “Characterization of automatic guided vehicle dispatching rules,” International Journal of Production Research,Vol.22, No.3, pp.359-374
    [6]Evers, J. J. M., and Koppers, S. A. J., 1996, “Automated guided vehicle traffic control at a container terminal”, Transpn. Res.A., Vol.30, No.1, pp.21-34
    [7]Goetz, W. G., and Egbelu, P. J., 1990, “Guide path design and location of load pick-up/drop-off points for an automated guided vehicle system,” International Journal of Production Research, Vol.28, No.5, pp.927-941
    [8]Gould, L., 1989, “AGVS goes in without stopping the presses” Modern Material Handling, pp.60-62
    [9]Gould, L., 1990, “Could an AGVs work for you?” Modern Material Handling, Augest, pp.74-79
    [10]Grunow, M., Guenther, H. O., and Lehmann, M., 2004, “Dispatching multi-load AGVs in highly automated seaport container terminals”, OR Spectrum, Vol.26, No.12, pp.211-235
    [11]Grunow, M., Guenther, H. O., and Lehmann, M., 2006, “Strategies for dispatching AGVs at automated seaport container terminals”, OR Spectrum, Vol.28, No.4, pp.587-610
    [12]Hartmann, S., 2004, “A general framework for scheduling equipment and manpower at container terminals”, OR Spectrum, Vol.26, No.1, pp.51-74
    [13]Iris, F. A., and Harika, I., 2004, “Comparison of vehicle types at an automated container terminal”, OR Spectrum, Vol.26, No.1, pp.117-143
    [14]Kim, C. W., and Tanchoco, J. M. A., 1991, “Conflict-free shortest path bi-directional AGV routing”, International Journal of Production Research, Vol.29, No.12, pp.2377-2391
    [15]Kim, K. H., and Bae, J. W., 2004, “A look-ahead dispatching method for automated guided vehicles in automated port container terminals”, Transportation Science, Vol.38, No.2, pp.224-234
    [16]Klein, C. M., and Kim, J., 1996, “AGV dispatching”, International Journal of Production Research, Vol.34, No.1, pp.95-110
    [17]Koo, P. H., Lee, W. S., and Jang, D. W., 2004, “Fleet sizing and vehicle routing for container transportation in a static environment”, OR Spectrum, Vol.26, No.2, pp.193-209
    [18]Lee, J., Tangjarukij, M., and Zhu, Z., 1996, “Load selection of automated guided vehicles in flexible manufacturing systems”, International Journal of Production Research, Vol. 34, No.12, pp.3383-3400
    [19]Nayyar, P., and Khator, S. K., 1993, “Operational control of multi-load vehicles in an automated guided vehicle system”, Computers and Industrial Engineering, Vol.25, No.1-4, pp.503-506
    [20]Ozden M., 1988, “A simulation study of multiple-load-carrying automated guided vehicles in a flexible manufacturing system”, International Journal of Production Research, Vol.26, No.8, pp.1353
    [21]Sinriech, D., and Tanchoco, J. M. A., 1995, “An introduction to the segmented flow approach for discrete material flow systems”, International Journal of Production Research, Vol. 33, No.12, pp.3381-3410
    [22]Steenken, D., Voβ, S., and Stahlhock, R., 2004, “Container terminal operation and operations research – a classification and literature review”, OR Spectrum, Vol.26, No.1, pp.3-49
    [23]Tanchoco, J. M. A., and Sinriech, D., 1991, “OSL-optimal single loop guided paths for AGVs”, International Journal of Production Research, Vol.30, No.3, pp.665-681
    [24]Vis, I. F. A., and Koster, R. D., 2002, “Transshipment of containers at a container terminal: an overview”, European Journal of Operational Research, Vol.147, No.1, pp.1-16
    [25]Yim, D., and Linn, R. J., 1993,“Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system”, International Journal of Production Research, Vol.31, No.1, pp.43-57
    [26]張博凱,2006,『JIT環境中以懲罰值為基準的單載量AGV控制方法』,國立中央大學工業管理研究所碩士論文
    [27]劉顥程,2004,『在封閉式系統下多載量AGV之載取派車法則與負載揀取法則的研究』,國立中央大學工業管理研究所碩士論文

    QR CODE
    :::