| 研究生: |
劉榮平 Jung-Ping Liu |
|---|---|
| 論文名稱: |
鈮酸鋰晶體之光扇效應與應用 The fanning effect and its application of lithium niobate crystal |
| 指導教授: |
游漢輝
Hon-Fai Yau |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 鈮酸鋰 、光折變晶體 、單光束儲存 、光扇效應 |
| 外文關鍵詞: | LiNbO3, lithium niobate, photorefractive crystal, fanning effect, one-beam recording |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈮酸鋰晶體是一種被廣泛使用於全像光儲存的光折變材料。然而由於光折變非線性效應,因此鈮酸鋰晶體在照光時很容易產生光致散射現象,也就是所謂的光扇效
應。光扇現象對於大部分的全像儲存術來說,都是一種很嚴重的雜訊來源,也因此瞭解鈮酸鋰晶體中的光扇現象是一件非常有意義且重要的工作。本論文乃基於此動機,從全像術的概念以及光折變晶體光學出發,探討光折變鈮酸鋰晶體在各種實驗條件下的光扇效應特性以及其應用。
在現象研究方面,我們探討了不同晶體擺向以及將晶體浸入不同溶液時,扇射效應的不同。此外我們也探討了不同照光光束直徑、不同照光偏振態和不同光強對鈮酸
鋰晶體中光扇效應的影響。我們發現在同調光照射、晶體光軸垂直光路的情況下,在鈮酸鋰晶體中總是會產生光扇效應。此外,這一部份的工作也可以幫助我們瞭解光扇效應的特性,並對我們後續要抑制或應用光扇效應時有所助益。
在光扇效應的應用研究方面,我們提出利用光扇效應在光折變鈮酸鋰晶體中以同調光單光束記錄影像資料。據我所知這種記錄法在過去從未有人提出過。除此此外,
我們還提出利用同調光單光束記錄法在晶體中記錄灰階影像的方法,並證實了用同調光單光束記錄法也可以進行多功儲存。我們也把同調光單光束記錄法應用在動態擾動介質中的單向成像。我們提出的架構是所有動態擾動介質中的單向成像術中,最簡單的,也是唯一一種可以接受任何偏振態光的方法。最後,我們發現雖然非同調光(白光)在晶體中不會產生任何光扇效應,但仍然可以在光折變鈮酸鋰晶體中記錄邊緣強化的影像資料。據我們所知,在過去從未有人能單以極弱的白光在光折變晶體中產生折射率變化,甚至是記錄影像。我們也對這個現象提出了一個符合實驗的理論模型。
Lithium niobate is one of the widely used photorefractive materials in the field of holography and optical signal processing. However, there is always the effect of light-induced scattering, the “fanning effect”, in lithium niobate crystal under light illumination. The fanning effect is due to the nonlinear photorefractive effect, and it will reduce the signal-to-noise ratio of the storage system. Therefore it is an important issue to investigate the fanning effect in lithium niobate crystal. Based on this idea, in this thesis I discussed the phenomenological characteristics of fanning effect in lithium niobate crystal in different configurations. I also proposed some applications using fanning effect. In studying the characteristics of fanning effect, we investigated the fanning
effect in different crystal orientations, liquids in which the crystal is immersed, light
polarization states, light spot sizes, and light intensities. We found that when the crystal is x-cut, fanning effect always occurs regardless of the polarization state is ordinary or extraordinary. On the other hand, different immersing liquids or light spot sizes do not change the phenomenon of fanning effect. In applying fanning effect, we proposed a novel method to record images in lithium niobate using only object beam. The recording is due to fanning effect, and it can be analyzed using the model of fanning hologram. Using this recording
method, we accomplished gray-level pattern multiplexing. We further demonstrated one-way imaging through dynamic turbid media using this recording method. Our method is, to our knowledge, the simplest one-way imaging method, and it is also the only one that can work on any polarization state of light. Finally, although
incoherent light never induces fanning light, we found it can also induce variation of refractive index of lithium niobate crystal. We also investigated its mechanism, and suggested some applications using the incoherent one beam recording method.
(第一章,第二章以後之參考資料請參閱論文)
[1] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J. J. Lecinstein, and K. Nassau, "Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3," Applied Physics Letters 9, 72-74 (1966).
[2] F. H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Optics Letters 18, 915-917 (1993).
[3] P. Yeh, A. E. T. Chiou, and J. Hong, "Optical interconnection using photorefractive dynamic holograms," Applied Optics 27, 2093-2096 (1988).
[4] J. E. Ford, Y. Fainman, and S. H. Lee, "Array interconnection by phase-coded optical correlation," Optics Letters 15, 1088-1090 (1990).
[5] G. Barbastathis, M. Balberg, and D. J. Brady, "Confocal microscopy with a volume holographic filter," Optics Letters 24, 811-813 (1999).
[6] A. Sinha and G. Barbastathis, "Volume holographic telescope," Optics Letters 27,1690-1692 (2002).
[7] V. Leyva, G. A. Rakuljic, and B. O''Conner, "Narrow bandwidth volume
holographic optical filter operating at the Kr transition at 1547.82 nm," Applied Physics Letters 65, 1079-1081 (1994).
[8] H. Gao, J. Zhang, S. Yoshikado, and T. Aruga, "Photorefractive low-pass temporal fillter," Optics Communications 203, 363-369 (2002).
[9] R. T. B. James, C. Wah, K. Iizuka, and H. Shimotahira, "Optically tunable optical filter," Applied Optics 34, 8230-8235 (1995).
[10] J. P. Huignard and A. Marrakchi, "Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals," Optics Communications 38, 249-254 (1981).
[11] T. Y. Chang, J. H. Hong, and P. Yeh, "Spatial amplification: an image-processing technique using the selective amplification of spatial frequencies," Optics Letters 15, 743-745 (1990).
[12] Y. Shi, D. Psaltis, A. Marrakchi, and J. A. R. Tanguay, "Photorefractive incoherent-to-coherent optical converter," Applied Optics 22, 3665-3667 (1983).
[13] C. C. Sun, B. Wang, and J. Y. Chang, "Photorefractive incoherent-to-coherent optical converter based on anisotropic self-diffraction in BaTiO3," Applied Optics 37, 8247-8253 (1998).
[14] H. F. Yau, N. J. Cheng, R. H. Tsol, H. Y. Lee, and Y. P. Tong, "Real-time incoherent optical pattern recognition with photorefractive crystals," Japanese Journal of Applied Physics 37, 4834-4837 (1998).
[15] J. Feinberg, "Self-pumped, continous-wave phase conjugator using internal reflection," Optics Letters 7, 486-488 (1982).
[16] J. Feinberg, "Continous-wave phase conjugator with wide field of view," Optics Letters 8, 480-482 (1983).
[17] H.-F. Yau, P.-J. Wang, and E.-Y. Pan, "Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3," Optics Letters 21, 1168-1170 (1996).
[18] K. Buse, A. Adibi, and D. Psaltis, "Non-volatile holographic storage in doubly doped lithium niobate crystals," Nature 393, 665-668 (1998).
[19] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Murray Hill,New Jersey, 1983).
[20] D. Garbor, "A new microscopic principle," Nature 161, 777-778 (1948).
[21] F. Yu and S. Yin, Photorefractive Optics (Academic Press, San Diego, 2000).
[22] K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, "A photorefractive polymer with high optical gain and diffraction efficiency near 100%," Nature 371, 497-500 (1994).
[23] P. J. v. Heerden, "Theory of optical information storage in solids," Applied Optics 2, 393-400 (1963).
[24] D. Psaltis, D. Brady, and K. Wagner, "Adaptive optical networks using
photorefractive crystals," Applied Optics 27, 1752-1759 (1988).
[25] R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Murray Hill, New Jersey, 1988).
[26] P. Yeh, Introduction to Photorefractive Nonlinear Optics (John-Wiley & Sons, Inc.,New York, 1993).
[27] J. W. Goodman, Introduction to Fourier Optics, 2 ed. (The Mc-GRAW-HILL Company, Inc., New York, 1996).
[28] A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, Inc., New York, 1983).
[29] B. Ke, "The study of reflection and refraction of light at the interface between an anisotropic medium and an isotropic medium.," (National Central University,Jungli city, R.O.C, 2003).
[30] B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach, Philadelphia, 1992).