跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡雅倫
Ya-Lun Tsai
論文名稱: 光子晶體結構中光傳播行為之研究與應用
Study of Light Guided in Photonic Crystals
指導教授: 陳啟昌
Chii-Chang Chen
張正陽
Jenq-Yang Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 英文
論文頁數: 138
中文關鍵詞: 波導波導共振元件光子晶體
外文關鍵詞: Guide mode resonance, Donut waveguide, Photonic crystals
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要的內容是藉由數值模擬來分析光在奈微米光學元件中傳播的特性。在本論文中,我們利用光子晶體結構,將介電質材料以週期性的方式排列,來產生所謂的光侷限效應。然而光在波導中傳播時,會存在光耗損,因此本論文的第一個部分是研究如何以三維光子晶體結構降低二維光子晶體波導之傳播光耗損。我們使用有限時域差分法,將奈米小球所排列的三維光子晶體放置於二維光子晶體波導上,來達到有效減少垂直方向上的能量損耗。結果顯示TM模態光波穿透率可有效提升2.25倍。本論文的第二部份,我們利用光子晶體建構透鏡,結合角錐狀波導,將光由寬波導耦合進入窄波導之中,其耦合效率達到87%。
    本論文的第三部分研究週期性排列的甜甜圈波導,此一新型的光子晶體波導能夠有效地將光的能量侷限在其中空結構當中,而且波導的中心為空氣,更是降低了因介質的因素所造成的能量損耗。我們以圓柱座標的有限時域差分法來探討甜甜圈波導的結構,計算出結構所產生的光子能隙,找到能夠將能量完全侷限在波導的條件。另一個特性則是,甜甜圈波導的在部分光子能隙(partial band gap) 的條件下,能夠找到讓光場在出光時不易繞射(diffractionless)的效果。利用Bessel節點的方式位置甜甜圈的條件之下,其出光的繞射角可由?????縮減至????? 。利用此結構在雷射上,能夠提升光束集中的效果。
    本論文的第四部分是共振波導元件。傳統上要製作窄頻的光濾波器需要靠多層的光學薄膜,而共振波導元件則是以次波長光柵加上平面波導的結構亦能達到相同的效果。我們以嚴格耦合波理論來進行計算,在製作方面,以化學沉積法在共振波導薄膜元件上成長SiO2薄膜,共振波長的頻寬會隨著薄膜厚度的增加而呈現震盪的效果,當薄膜厚度超過一臨界值時頻寬便不再震盪。本論文的第五部分,我們利用單層排列的奈米小球與乾蝕刻技術,製作二維的共振波導元件。此一製程過程簡化了製作次波長光柵所需的電子束微影法之曝光顯影製程,此元件可應用於提升太陽電池之光萃取效應。


    Nanophotonics has attracted most of researchers’ interests owing to its plenty of promising purposes such as integrated optics, plasmonics, photonic bandgap for light manipulation, near-filed scanning optical microscopy, ultra-high-resolution lithography, bio-medical sensing, high-density data storage, and etc. With the rapid growing fabrication technology of nano structure, previously proposed applications which were limited to merely theoretical investigation have become feasible. In this thesis, several concepts associated with nanophotonics are investigated and demonstrated including photonic crystal waveguide, novel photonic structures, and subwavelength grating resonance.
    In waveguide application, we present a SOI rib waveguide embedded with two-dimensional photonic crystal structure for making photonic bandgap yielding filter characteristics between 1.3?m and 1.55?m wavelength. Additional added three-dimensional photonic crystal structure is also showing to reduce the propagation loss of the guided mode. In addition, we present a structure of tapered waveguide to improving the coupling efficiency for coupling application. The equivalent microlens structure consists of two-dimensional photonic crystal structure shows that the transmission efficiency of coupled mode can approach 87.5%. The photonic-crystal based telescopic structure is feasible of embedded to integrated optics for practical application.
    We propose a novel donut-like waveguide, which has a photonic crystal structure to improve its directional characteristics. This device is able to reduce the diffraction angle of outward beam from a waveguide. The photonic band gap of the structure associated with concentric tori with linearly increased distance is designed and analyzed. The result of field distribution shows the energy is combined in the hollow region inside the waveguide. In the partial band gap, the output from the donut waveguide can cause diffractionless output beam that is capable of functioning as a highly efficient beam shaper.
    For subwavelength grating resonance, two approaches of manipulating the resonance behavior are demonstrated to increase its quality factor Q. By using a novel air-bridged resonant grating-waveguide structure, we demonstrate that it is capable of modifying the resonance wavelength and spectral width under normal incidence with a post process which is unachievable in previous resonant grating structures. For two-dimensional resonant grating structure, we develop an easy approach by using single-layered polystyrene microspheres of triangular array that can replace the complex process of e-beam lithography. A following etching process is used to fabricate the resonant structure. The resultant transmittance shows a very wide angular response over 20 degrees which is suitable of trapping the light of oblique incidence for BIPV application.

    Abstract………………………………………………………………....I Abstract in Chinese…………………………………………..……….III Acknowledgement……………………………………………………..IV Contents …………………………………………………………….….V List of Figure Captions………………………………………………..VI List of Tables…………………………………………………………...XI Chapter 1 Introduction………………………………………………………….1 1.1 Introduction to photonic crystals………………………………………….…2 1.2 Sub-wavelength optical elements……………………………………............6 1.3. Motivation and thesis structure………………………………………….….9 Chapter 2 Theory and Numerical Method…………………..……….……11 2.1 Maxwell’s equation……………………………………………….…..……11 2.2 Methods to Analyze the Optical Properties of Photonic Crystals………….14 2.2.1 The Plane Wave Expansion Method………………..………………14 2.2.2 Equi-Frequency Contour……………………………………...……17 2.2.3 Normal surface ……………………………………………….……18 2.2.4 Finite Difference Time-Domain (FDTD) Method …………………19 2.3 The Methods to Analyze the Guided-Mode Resonance Effect…………….31 2.3.1 Rigorous Coupled-Wave Analysis (RCWA) of Resonant Grating…33 2.3.2 Waveguide Theory[78]………………………………..……………37 2.4 Summary……………………………………………………...……………39 Chapter 3 Reducing the Loss of Guided Modes in Waveguides…...…40 3.1 Reducing the Propagation Loss of Guided Mode in Photonic Crystal Slab Waveguide …………………………………………………………...…….41 3.2 Design of Low-Loss Tapered Waveguide by Applying Photonic-Crystal-Based Microlenses in Telescopic Structure…………..…51 3.3 Conclusions…………………………………………………………...……64 Chapter 4 Donut Waveguide…………………………………………….……65 4.1 Introduction…………………………………………………………...……65 4.2 Complete Band Gap of Donut Structure………………………...…………66 4.3 Donut Waveguides and Directivity of Output Beam………………….……70 4.4 Bessel Beam Produced by Donut Waveguide………………………...……74 4.5 Cascading of EDG and BDG………………………………………………82 4.6 Summary………………………………………………………………...…83 Chapter 5 Application of Anomalous Diffraction Phenomena Associated with Subwavelength Grating Structure……….85 5.1 Introduction to Guided-Mode Resonator……………………..……………85 5.2 Narrowing the Spectral Linewidth of GMR Structure…………………..…87 5.2.1 Transmission Notch Filter Associated with Membrane Structure.....88 5.2.2 Effect of Adding an Underlayer to GMR Membrane………………90 5.2.3 Demonstration of Linewidth Reduction in GMR Membrane…...…92 5.2.4. Conclusion…………………………………………………………98 5.3 Two-Dimensional GMR……………………………………………………99 5.3.1 Fabrication of 2D-GMR and Characterization Measurement….…101 5.3.2 Conclusion………………………………………………...………105 Chapter 6 Conclusion and Future Work…………………………………107 References…………………………………………………………………..……111 Publication List…………………………………………………………………120 Awards and Patents……………………………………………………………122

    [1] S.Sinzinger, J. Jahns, Microoptics Wiley-Vch 2nd 2003
    [2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 58, p. 2059, (1987)
    [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, p. 2486, (1987)
    [4] http://en.wikipedia.org/wiki/File:Close-packed_spheres.jpg
    [5] V. Kuzmiak. "Localized defect modes in a two-dimensional triangular photonic crystal". Phys. Rev. B, 57:15242, (1998).
    [6] E. R. Brown, C. D. Parker, and E. Yablonovitch. "Radiation properties of a planar antenna on a photonic-crystal substrate". J. Opt. Soc. Am. B, 10:404, (1993).
    [7] H. Y. Ryu, J. K. Hwang, and Y. H. Lee. "Effect of size nonuniformities on the band gap of two-dimensional photonic crystals". Phys. Rev. B, 59:5463, (1999)
    [8] M. Qiu and S. He. "Large complete band gap in two-dimensional photonic crystals with elliptic air holes". Phys. Rev. B, 60:10610, (1999).
    [9] C. K. Huang, C. H.Chan, C. Y. Chen, Y. L. Tsai, C. C. Chen, J. L. Han and K. H. Hsieh,” Rapid fabrication of 2D and 3D photoniccrystals and their inversed structures,” Nanotechnology 18 265305(2007)
    [10] J. D. Joannopoulos, “Self-assembly lights up,” Nature, 414, pp. 257-258, (2001).
    [11] C. H. Chan, C. C. Chen, C. K. Huang et al., “Self-assembled free-standing colloidal crystals,” Nanotechnology, 16, no. 9, pp. 1440-1444, (2005).
    [12] M. Campbell, D. N. Sharp, M. T. Harrison et al., “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, 404, pp. 53- 56, (2000).
    [13] M. Salauen, M. Audier, M. Duneau et al., “Synthesis of 3-dimensional periodic nanostructures in an interference field of UV laser light,” Appl. Phys. A, 93, pp. 105-110, (2008).
    [14] M. Duneau, F. Delyon, and M. Audier, “Holographic method for a direct growth of three-dimensional photonic crystals by chemical vapor deposition,” J. Appl. Phys., 96, pp. 2428-2436,(2004).
    [15] P. V. Braun and P. Wiltzius, “Microporous materials - Electrochemically grown photonic crystals,” Nature, 402, pp. 603-604, (1999).
    [16] P. St. J. Russell, S. Mead, T. A. Birks, J. C. Knight, and B. J. Mangan, Int. Patent Appl., Wo00/60388 (2000)
    [17] G.-T. Chen, J.-I. Chyi, C.-H. Chan et al., “Crack-free GaN grown on AlGaN/(111)Si micropillar array fabricated by polystyrene microsphere lithography,” Appl. Phys. Lett., 91, 261910, (2007).
    [18] W. Wu, A. Katsnelson, O. G. Memis et al., “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotechnology, 18, 485302, (2007).
    [19] D. W. Prather, A. Sharkawy, and S. Shi, “Design and applications of photonic crystals,” in W. A. Goddard III, D.W Brenner, S.E. Lyshevski, and G. J. Iafrate, Eds. Handbook of Nanoscience, Engineering, and Technology, Boca Raton, FL:CRC Press, , pp.211-232(2002)
    [20] K. Sakoda, “Optic of Photonic Crystals,” Opt. Rev., vol. 6, pp. 201-209, (2001)
    [21] A. R. McGurn, “Photonic Crystal Circuits,” Physica B, vol. 296, pp. 201-209,( 2001)
    [22] Hatice Altug and Jelena Vuckovic, ” Photonic crystal nanocavity array laser,” Opt. Exp. vol. 13, 8819(2005)
    [23] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B, vol 62, no. 16, 10696, (2000).
    [24] P. Halevi, A. A. Krokhin and J. Arriaga, “Photonic Crystal Optics and Homogenization of 2D Periodic Composites,’’ Phys. Rev. Lett. 82, 719 (1999)
    [25] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals,” Phys. Rev. B. 65, 115208 (2003).
    [26] Lie-Ming Li, “Two-dimensional photonic crystals: Candidate for wave plates,” Appl. Phys. Lett. 78, 3400 (2001).
    [27]Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006).
    [28] W. Zhang, J. Liu, W. P. Huang, and W. Zhao “Self-collimating photonic-crystal wave plates,” Optics Lett. vol. 34 2676 (2009)
    [29] Ohtera, Y., T. Sato, T. Kawashima and T. Tamamura, “Photonic Crystal Polarization Splitters,” Electron. Lett. 35, 1271 (1999)
    [30] X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152 (2005).
    [31] V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Optic Exp. vol. 12, 1575(2004).
    [32] M. L. Povinelli, Steven G. Johnson and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays” Optic Exp. vol. 13, 7145(2005).
    [33] Amnon Yariv, Yong Xu, Reginald K. Lee, and Axel Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711 (1999).
    [34] Toshihiko Baba, “Slow light in photonic crystals,” nature photonics vol. 2 465 (2008).
    [35] Kazuhiko Hosomi and Toshio Katsuyama, “A Dispersion Compensator Using Coupled Defects in a Photonic Crystal,” IEEE J. Quantum Electron. 38, 825 (2002).
    [36] A. Yu. Petrov and M. Eich, “Dispersion Compensation With Photonic Crystal Line-Defect Waveguides,” IEEE Journal on selected Area in communcation, vol. 23, 1396 (2005).
    [37] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett. 78, 563 (2001)
    [38] J. C. Knight, J. Broeng, T. A. Birks, and P. St. J.Russell, “Photonic band gap-guidance in opticalfibers,” Sicience, 282, 1476 (1998).
    [39] Attila Mekis, J. C. Chen, I. Kurland, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett. 77, 3787 (1996).
    [40] C. Luo, S.G. Johnson, D.J. Joannopoulos, amd J.B. Pendry, “All-angle negative refraction without negative effective index,” Phys, Rev. B 65, 201104 (2002).
    [41] Popovic CD, Sprague RA, Neville Connell GA, "Techniques for monolithic fabrication of microlens arrays", Appl. Opt. 27 1281–1284, (1988).
    [42] Mark S. Mirotznik, D. W. Prather, J. N. Mait, W. A. Beck, S. Shi, and X. Ga “Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method,” Appl. Opt. vol. 39 2871(2000).
    [43] Jon M. Bendickson,* Elias N. Glytsis, Thomas K. Gaylord, and David L. Brundrett “Guided-mode resonant subwavelength gratings: effects of finite beams and finite gratings,” J. Opt. Soc. Am. A vol. 181912 (2001).
    [44] R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, (1992).
    [45] S. S. Wang and R. Magnusson, Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, no. 14, pp.2606-2613, (1993)
    [46] Tomoyoshi Motohiro and Y. Taga “Thin film retardation plate by oblique deposition” Applied Optics, Vol. 28, Issue 13, pp. 2466-2482 (1989)
    [47] Chi-Hung Lee Chi-Hung Lee, Wang-Ling Tsai Wang-Ling Tsai, Yi Chiu Yi Chiu and H-PD Shieh “Micro polarizing beam splitter for blue wavelength optical pickups application.” CORD Conference Proceedings :91 (2005)
    [48] Dongho Shin, “Resonance properties of periodic waveguides and their applications,” Ph.D. dissertation, the University of Texas at Arlington, Aug. 1999.
    [49]R. Magnusson, S. S. Wang, T. D. Black, and A. Sohn, “Resonance properties of dielectric waveguide gratings: theory and experiments at 4-18GHz,” IEEE Trans. on Antennas and Propagation, vol. 42, no. 4, pp. 567-569, (1994).
    [50] S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filter with diffractive thin-film layers,” Opt. Lett., vol. 26, pp. 584-586, (2001).
    [51] R. Magnusson, D. Shin, and Z. S. Liu, “Guided-mode resonance Brewster filter,” Opt. Lett., vol. 23, no. 8, pp. 612-614, (1998).
    [52] S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sideband,” Opt. Lett., vol. 19, pp. 919-921, (1994).
    [53] A. Mizutani, H. Kikuta, K. Nakajima, and K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A, vol. 18, no. 6, pp. 1261-1266, (2001).
    [54] Z. Hegedus, R. Netterfield, “Low sideband guided-mode resonance filter,” Appl. Opt., vol. 39, pp. 1469-1473, (2000).
    [55] G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,“Appl. Opt., vol. 43, no. 8, pp. 1683-1694, (2004).
    [56] T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A, vol. 22, no. 12, pp. 2799-2803, (2005).
    [57] D. Lacour, J. P. Plumey, G. Granet, and A. M. Ravaud, “Resonant waveguide gratings: analysis of polarization independent filtering,” Optical and Quantum Electron., vol. 33, pp. 451-470(2001)
    [58] A.-L. Fehrembach and A. Sentenac, “Study of waveguide grating eigenmodes for unpolarized filtering applications,” J. Opt. Soc. Am. A, vol. 20, no. 3, pp. 481-488, (2003).
    [59] S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A, vol. 13, no. 5, pp. 993-1005, (1996)
    [60] D. Lacour, G. Granet, and J.-P. Plumey, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A, vol. 20, no. 8, pp. 1546-1552, (2003).
    [61] G. Niederer, W. nakagawa, and H. P. Herzig, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Exp., vol. 13, no. 6, pp. 2196-2200, (2005).
    [62] A. Sharon, D. Rosenblatt, A. A. Friesem, H. G. Webber, H. Engel and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett., vol. 19, pp. 1564-1566, (1996).
    [63] R. Magnusson, Y. Ding, K. J. Lee, P. S. Priambodo, and D. Wawro, “Characteristics of resonant leaky-mode biosensors,” in Nanosensing: Material and Devices II, ed. M. S. Islam and A. K. Dutta, Proc. SPIE, vol. 6008, pp. 60080U-1-60080U-10, (2005).
    [64] Maxwell, James Clerk. “A dynamical theory of the electromagnetic field”. Philosophical Transactions of the Royal Society of London 155: 459–512 1865.
    [65] K. Sakoda, Optical Properties of Photonic Crystals, Springer, 2001.
    [66] M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565 (1991).
    [67] Dennis W. Prather et al, Photonic crystals: theory, applications, and fabrication, Wiley, (2009)
    [68] Phys. Rev. B. 83, 174303(2011)
    [69] Susumu Noda et al, Roadmap on photonic crystals, Kluwer Academic, London .
    [70] Yariv and Pochi Yeh
    [71] 欒丕綱 和 陳啟昌, 光子晶體, 五南出版社, 2005.
    [72] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Baker & Taylor Books, (2000).
    [73] IEEE trans antennas Propagation vol. ap-14 pp. 302, 1966
    [74] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron., vol. 33, no. 11, pp. 2038-2059, (1997).
    [75]N. Dudovich, G. Levy-Yurista, A. Sharon, A. A. Friesem, and H.-G. Weber, “Active semiconductor-based grating waveguide structures,” IEEE J. Quantum Electron., vol. 37, no. 8, pp. 1030-1039(2001)
    [76] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A, 18, pp. 1470-1475, (1990).
    [77] T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. SPIE, vol. 73, no. 5, pp. 894-937, (1985).
    [78] H. Nishihara, M. Haruna and T.Suhara, Optical integrated circuit, New York 1985.
    [79] E. Chow, S. L. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
    [80] Pustai, David; Shi, Shouyuan; Chen, Caihua; Sharkawy, Ahmed; Prather, Dennis, “Analysis of splitters for self-collimated beams in planar photonic crystals” Opt. Express 12, 1823-1831 (2004).
    [81] V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001).
    [82] V. Mizeikis, S. Juodkazis, A. Marcinkevicius, S. Matsuo, H. Misawa, “Tailoring and characterization of photonic crystals,” J. of Photochemistry and Photobiology C 2, 35–69 (2001)
    [83] K. Kawano, T. Kitoh, “Introduction to optical waveguide analysis,” (John Wiley & Sons Inc, New York, 2001), for the effective index method: pp. 20-35; for BPM: pp. 165-232; for FDTD: pp. 233-250.
    [84] V. R. Almeida, R. R. Panepucci, and M. Lipson: Opt. Lett. vol.28 no. 1302 (2003).
    [85]M. Yanagisawa, Y. Yamada, and M. Kobayashi: IEEE Photonics Technol. Lett. vol. 5 no. 433(1993).
    [86] F. H. G. M. Wijnands, C. Crookes, P. M. Charles, N. Palmer, M. Chisholm, S. Wrathall, A. J. Taylor, R. M. Ash, and S. Meadowcroft: Opt. Eng. 37 (1998) 3106.
    [87] V. R. Almeida, R. R. Panepucci, and M. Lipson: Opt. Lett. vol.28 no. 1302 (2003).
    [88] C. W. Chang, M. L. Wu, and W. F. Hsieh: IEEE Photonics Technol. Lett. 15 (2003) 1378.
    [89] Yeh P, Yariv A and Marom E, ” Theory of Bragg fiber” J. Opt. Soc. Am. 68 1196–201 (1978)
    [90] Doran N J and Bulow K J “Cylindrical Bragg fibers: A design and feasibility study for optical communications,” J. Lightwave Technol. 1 588–590(1983)
    [91] Chiu H K, Hsiao F L, Chan C H and Chen C C “Compact and low-loss bent hollow waveguides with distributed Bragg reflector” Opt. Express 16 15069(2008)
    [92] Broeng J, Barkou S E, Søndergaard T and Bjarklev A “Analysis of air-guiding photonic bandgap fibers” Opt. Lett. 25 96(2000)
    [93] J. Durnin," Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A 4, 651-654 (1987).
    [94] J. Durnin, J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett. 58, 1499-1501 (1987).
    [95] R. M. Hermann, T. A.Wiggins," Production and uses of diffractionless beams," J. Opt. Soc. Am. A 8, 932-942 (1991)
    [96]A. Vasara, J. Turunen, A. T. Friberg," Realization of general nondiffracting beams with computer-generated holograms," J. Opt. Soc. Am. A 6, 1748-1754 (1989)
    [97] W. B. Williams, J. B. Pendry," Generating Bessel beams by use of localized modes," J. Opt. Soc. Am. A 22, 992-997(2005)
    [98] Q. Zhan, "Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam," Opt. Lett. 31, 1726-1728(2006)
    [99] J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, "Optical dipole traps and atomic waveguides based on Bessel light beams," Phys. Rev. A 63063602-1~063602-8 (2001).
    [100]J. Arlt, and K. Dholakia, "Generation of high-order Bessel beams by use of an axicon," Opt. Commun. 177, 297-301 (2000).
    [101] J. Fan, E. Parra, I. Alexeev, K. Y. Kim, H. M. Milchberg, L. Y. Margolin, L. N. Pyatnitskii , " Tubular plasma generation with a high-power hollow Bessel beam, " Phys. Rev. E 62, R7603-R7606(2000).
    [102] T. Wulle, and S. Herminghaus, "Nonlinear Optics of Bessel Beams," Phys. Rev. Lett. 70, 1401-1404(1993).
    [103] M. Fortin, M. Piché, E.F. Borra, " Optical tests with Bessel beam interferometry," Opt. Express 12, 5887 – 5895(2004) .
    [104] J. Salo, J. Meltaus, E. Noponen, M. M. Salomaa, A. Lonnqvist, T. Koskinen, V. Viikari, J. Saily, J. Hakli, J. Ala-Laurinaho, J. Mallat, and A. V. Raisaen, "Holograms for shaping radio-wave fields," J Opt A-Pure Appl. Opt. 4, S161-S167 (2002)
    [105] C. C. Chen, T. Pertsch, R. Iliew, F. Lederer, and A. Tunnermann, "Directional emission from photonic crystal waveguides," Opt. Express 14, 2423-2428(2006).
    [106] J. Durnin and J. H. Eberly, “Diffraction-free arrangement,” U.S. patent 4,852,973 (1989)
    [107] Purcell E M Phys. Rev. 69 681(1946)
    [108] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A, vol. 17, no. 7, pp. 1221-1230, Jul. (2000).
    [109] Y. Nie, L. Wang, Z. Wang, and C. Lai, “Beam selector dependent on incident angle by guided-mode resonant subwavelength grating,” Opt. Eng., vol. 41, pp. 2966-2969, (2002).
    [110] R. Magnusson and Y. Ding, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett., vol. 18, no. 14, pp. 1479-1481, Jul. (2006).
    [111]Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Exp., vol. 12, no. 23, pp. 5661-5674, Nov. (2004).
    [112]T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Exp., vol. 23, no. 12, pp. 4645-4650, (2005)
    [113] G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,“Appl. Opt., vol. 43, no. 8, pp. 1683-1694, (2004).
    [114] T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid plymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett., vol. 87, pp. 151106-1-151106-2, (2005).
    [115] P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett., vol. 83, no. 16, 3248-3250, (2003).
    [116] D. Shin, Z. S. Liu, and R. Magnusson, “Resonant Brewster filters with absentee layers,” Opt. Lett., vol. 27, no. 15, pp. 1288-1290, (2002).
    [117] R. Rabady and I. Avrutsky, “Reliable fabrication technologies for optical resonant filters,” Appl. Opt., vol. 42, no. 22, pp. 4499-4504, (2003).
    [118] G. Levy-Yurista, A. A. Friesem, E. Pawlowski, L. Kuller, R. Ludwig, H. G. Weber, A. Donval, E. Toussaere, and J. Zyss, “Hybrid semiconductor polymer resonant grating waveguide structures, ” Optical Materials, vol. 17, pp. 149-154, (2001)
    [119] C. L. Hsu, Y. C. Liu, C. M. Wang, M. L. Wu, Y. L. Tsai, Y. H. Chou, C. C. Lee, and J. Y. Chang, “Bulk Micromachined Optical Filter Based on Guided-Mode Resonance in Silicon Nitride Membrane,” IEEE J. Lightwave Tech., vol. 24, no. 4, 1922-1928, (2006).
    [120] T. Katchalski, E. Teitelbaum, and A. A. Friesem, „Toward ultranarrow bandwidth polymer-based resonant grating waveguide structures,” Appl. Phys. Lett., vol. 84, no. 4, pp. 472-474, (2004).
    [121] A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A, vol. 14, no. 11, pp. 2985-2993, (1997).
    [122] C. M. Wang, J. Y. Chang, C. L. Hsu, C. C. Lee and J. C. Yang, “Si-based guided-mode resonance filter on a microoptical bench”, Electron. Lett., vol. 40, no. 21, pp. 1335–1336, (2004).
    [123]R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt., vol. 38, pp. 3714-3719, (1999).
    [124] P. Rochon, A. Natansohn, C. L. Callender, and L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett., vol. 71, no. 8, pp. 1008-1010, (1997)
    [125]R. Rabady and I. Avrutsky, “Fabrication methods of optical resonant filters with a close-to-rectangular filtering profile,” Appl. Opt., vol. 43, no. 5, pp. 1114-1120, (2004).
    [126] A. Sharon, D. Rosenblatt and A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett., vol. 69, pp. 4154-4156, (1996).
    [127]G. P. Bryan-Brown and J. R. Sambles, “Grating coupled liquid crystal waveguides using nematics and smectics,” J. Appl. Phys., vol. 73, no. 8, pp. 3603-3607, (1993).
    [128] A. Rosenberg, M. W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Hendry, C. R. Eddy, V. A. Shamamian, K. Bussmann, S. Shi, and D. W. Prather, “Guided resonance in asymmetrical GaN photonic crystal slabs observed in the visible spectrum,” Opt. Exp., vol. 13, no. 17, pp. 6564-6571, (2005).
    [129] Wenxing Liu, Zhenquan Lai, Hao Guo, and Ying Liu , “Guided-mode resonance filters with shallow grating” Opt. Lett. vol. 35, no. 6 865(2010)
    [130] Xiaoyong Fu, Kui Yi, Jianda Shao, and Zhengxiu Fan ”Nonpolarizing guided-mode resonance filter” Opt. Lett. vo.l. 34, no. 2 124 (2009)
    [131]W. Shu, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonances in photonic crystal slabs,” Appl. Phys. Lett, vol. 82, no. 13, pp. 1999-2001, Mar. (2003).
    [132] S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B, vol. 65, pp. 235112-1-235112-8, (2002).
    [133] Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett., vol. 90, pp. 031911-1-031911-3, (2007).
    [134] K. B. Crozier, V. L. Lousse, O. Lilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelength,” Phys. Rev. B, vol. 73, pp. 115126-1-115126-14,( 2006)
    [135] R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Exp., vol. 15, no. 17, pp. 10903-10910, (2007).
    [136] S. S. Wang and R. Magnusson, “Multilayer waveguide-grating filters,” Appl. Opt., vol. 34, no. 15, pp. 2414-2420, (1995)
    [137] Y. Ding and R, Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Exp., vol. 12, no. 9, pp. 1885-1891, (2004)
    [138] Boonruang S, Greenwell A, Moharam MG, “Multiline two-dimensional guided-mode resonant filters” Appl. Opt. vol. 45,No. 22 pp. 5740-5747(2006)
    [139] A. L. Fehrembach and A. Sentenac “Unpolarized narrow-band filtering with resonant gratings,” Appl. Phys. Lett. vol86 pp. 121105(2008)
    [140]S. Boonruang, A. Greenwell, and M. G. Moharam “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence”Appl. Opt. vol. 46, No. 33 pp. 7982-7992(2007)
    [141] F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures”Opt. Lett. Vol. 23, No. 15 1149 (1998)
    [142] P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett. 29(9), 974–976 (2004).
    [143]Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett. 89(5), 051102 (2006).
    [144] K. J. Lee, J. Jin, B.-S. Bae, and R. Magnusson, “Optical filters fabricated in hybrimer media with soft lithography”Opt. Lett., Vol. 34, No. 16, 2510 (2009).
    [145] C. L. Lin, “Light enhancement by the formation of an Al-oxide honeycomb nano-structure on the n-GaN surface of thin-GaN LED,” Appl. Phys. Lett. 90, 242106 (2007).
    [146] Kengo Nozaki and Toshihiko Baba “Quasiperiodic photonic crystal microcavity lasers”Appl. Phys. Lett. 84 4875.2004

    QR CODE
    :::