跳到主要內容

簡易檢索 / 詳目顯示

研究生: 布逹拉
Elmaamoun Ahmed
論文名稱: Recycling High Valued (S)-(+)-Ibuprofen from the Unused Racemic (R,S)-(±)-Ibuprofen Tablets by Green Chemistry
指導教授: 李度
Tu Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 應用材料科學國際研究生碩士學位學程
International Master Degree Program in Applied Materials Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 112
中文關鍵詞: 布洛芬手性分離非對映體鹽綠色化學回收除消解析度
外文關鍵詞: Ibuprofen, Chiral separation, Diastereomeric salt, Green Chemistry, Recycle, deracemization, Resolution
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究目的為利用拆分技術將未使用的藥物「外消旋布洛芬(R,S)-(±)-ibuprofen」回收分離得到價值更高的「右旋布洛芬[(S)-(+)-Ibuprofen]」,應用綠色化學方法作為循環經濟的一部分;拆分技術已應用於非鏡像異構鹽類的分離,如:甲基苄胺[(S)-(-)-α-methylbenzylamine]作為拆分溶劑。在本研究中,透過兩個步驟以達成拆分,首先,將回收的外消旋布洛芬與甲基苄胺的反應,形成右旋布洛芬-甲基苄胺鹽類[(S)-(+)-Ibuprofen-(S)-(-)-α-methylbenzylamine salt]及左旋布洛芬-甲基苄胺鹽類[(R)-(-)-Ibuprofen-(S)-(-)-α-methylbenzylamine salt],其中,右旋布洛芬-甲基苄胺鹽類則會沉澱析出;第二步,利用添加硫酸與析出的右旋布洛芬-甲基苄胺鹽類反應而得到右旋布洛芬。根據HPLC的純度含量分析得知,回收得到的右旋布洛芬產率為67%,對映體純度為93.2%;右旋布洛芬-甲基苄胺鹽類及右旋布洛芬兩個分子結構成功透過傅里葉轉換紅外光譜(FTIR)、核磁共振氫譜(1H NMR)、光學顯微鏡(OM)及差示掃描量熱法(DSC)分析鑑定;此外,右旋布洛芬的晶體學數據亦透過粉末X-射線繞射(PXRD)分析鑑定。最後,比較本方法與不對稱合成方法(Asymmetric synthesis),本方法則有較高的產率、較少的步驟、較有利的操作條件及使用較少化學品等的優點。


    The aim of this study is to increase the value of recycled (R,S)-(±)-ibuprofen from the unused commercial tablets by resolution, to produce higher valued (S)-(+)-ibuprofen as a part of a circular economy project by applying green chemistry method. The resolution was done by the diastereomeric salt separation method using (S)-(-)-α-methylbenzylamine as a resolving agent. In this work, two steps were performed: (1) reaction of recycled (R,S)-(±)-ibuprofen with (S)-(-)-α-methylbenzylamine to form (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt and (R)-(-)-ibuprofen-(S)-(-)-α-methylbenzylamine salt, in which (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt was selectively precipitated, followed by (2) recovery of (S)-(+)-ibuprofen by introducing H2SO4 to (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt. (S)-(+)-ibuprofen was obtained with 67% overall yield and 93.2% enantiopurity based on HPLC assay. The structures of both (S)-(+)-ibuprofen-(S)-(-)-α-methylbenzylamine salt and (S)-(+)-ibuprofen were successfully verified using FTIR, 1H NMR, OM, and DSC. In addition, the crystallographic data of (S)-(+)-ibuprofen was successfully verified using PXRD. And lastly, by comparing this method with asymmetric synthesis, this method gave better yield, a fewer number of steps, more favorable operating conditions, and fewer chemicals involved.

    摘要 v Abstract vi Acknowledgement vii List of Figures xiii List of Tables xviii Chapter 1 Introduction 1 1.1 Stereochemistry 1 1.2 History 4 1.3 The Importance of Chirality 5 1.4 Diastereomers 6 1.5 Categories of Racemic Mixtures 9 1.6 Most Used Techniques 11 1.7 Diastereomeric Salt of Ibuprofen 15 1.8 References 17 Chapter 2 Experimental Materials and Methods 25 2.1 Materials 25 2.1.1 Chemicals 25 2.1.2 Solvents 27 2.2 Experimental Procedures 29 2.2.1 Solubility Measurement 29 2.2.2 General Overview of the Process 32 2.2.2.1 Recycle of (R,S)-(±)-ibuprofen 33 2.2.2.2 Formation of Diastereomeric Salts 36 2.2.2.3 Recovery of (S)-(+)-ibuprofen 36 2.2.2.4 Recovery of (R)-(-)-ibuprofen 37 2.3 Analytical Measurements 38 2.3.1 Spectroscopic Method 38 2.3.1.1 Fourier Transform Infrared Spectroscopy (FTIR) 38 2.3.1.2 Nuclear Magnetic Resonance Spectroscopy (NMR) 41 2.3.2 Microscopic Method 43 2.3.2.1 Optical Microscopy (OM) 43 2.3.3 Thermal Analysis Methods 45 2.3.3.1 Differential Scanning Calorimetry (DSC) 45 2.3.4 Crystallographic Analysis Methods 48 2.3.4.1 Powder X-ray Diffraction (PXRD) 48 2.3.5 Separation Method 51 2.3.5.1 High-Performance Liquid Chromatography (HPLC) 51 2.4 References 55 Chapter 3 Results and Discussion 59 3.1 Form Space Determination 59 3.2 Resolution of the Recycled Racemic (R,S)-() Ibuprofen 65 3.3 Characterization of (S)-Ibuprofen-(S)-(-)-α-Methylbenzylamine Salt and (S)-(+)-Ibuprofen 68 3.3.1 FTIR 68 3.3.2 1H NMR 71 3.3.3 OM & DSC 75 3.3.4 PXRD 76 3.3.5 HPLC 78 3.4 Novelty of the Resolution Method 81 3.5 Comparison between the Synthesis of (S)-(+)-Ibuprofen by Asymmetric Synthesis and Diastereomeric Salt 82 3.6 Green Chemistry in Our Work 86 3.7 References 88 Chapter 4 Conclusions and Future Works 91 4.1 Conclusions 91 4.2 Future Works 91

    (1) Hornback, J. M. Organic Chemistry, 2nd ed.; Cengage Learning: Belmont, CA, 2005.
    (2) Eliel, E. L.; Wilen, S. H.; Doyle, M. P. Basic Organic Stereochemistry, 1st ed.; Wiley-Interscience: New York, 2001.
    (3) Organic Stereochemistry: Guiding Principles and Biomedicinal Relevance, 1st ed.; Testa, B., Caldwell, J., Kisak¿rek, M. V., Eds.; Wiley-VCH: Zürich, 2014.
    (4) Louis_Pasteur,_foto_av_Paul_Nadar.jpg (2388×3292) https://upload.wikimedia.org/wikipedia/commons/d/d2/Louis_Pasteur%2C_foto_av_Paul_Nadar.jpg (accessed Nov 27, 2019).
    (5) Nguyen, L. A.; He, H.; Pham-Huy, C. Chiral Drugs: An Overview. Int J Biomed Sci 2006, 2 (2), 85–100.
    (6) Borman, S. Chirality Emerges as Key Issue in Pharmaceutical Research: Despite Concerns That Complexities Associated with Racemate Use Could Force Drastic Changes in the Way Chiral Drugs Are Developed and Marketed, Many Now Believe Upcoming Regulations Are Unlikely to Be Draconian. Chem. Eng. News 1990, 68 (28), 9–14.
    (7) Millership, J. S.; Fitzpatrick, A. Commonly Used Chiral Drugs: A Survey. Chirality 1993, 5 (8), 573–576.
    (8) Fassihi, A. R. Racemates and Enantiomers in Drug Development. Int. J. Pharm. 1993, 92 (1), 1–14.
    (9) McMurry, J. Organic Chemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2016.
    (10) Wang, Y.; Chen, A. M. Enantioenrichment by Crystallization. Org. Process Res. Dev. 2008, 12 (2), 282–290.
    (11) Repta, A. J.; Baltezor, M. J.; Bansal, P. C. Utilization of an Enantiomer as a Solution to a Pharmaceutical Problem: Application to Solubilization of 1,2‐di(4‐piperazine‐2,6‐dione)Propane. J. Pharm. Sci. 1976, 65 (2), 238–242.
    (12) Dwivedi, S. K.; Sattari, S.; Jamali, F.; Mitchell, A. G. Ibuprofen Racemate and Enantiomers: Phase Diagram, Solubility and Thermodynamic Studies. Int. J. Pharm. 1992, 87 (1–3), 95–104.
    (13) Coquerel, G. Review on the Heterogeneous Equilibria between Condensed Phases in Binary Systems of Enantiomers. Enantiomer 2000, 5, 481–498.
    (14) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/sharpless/facts/ (accessed Nov 26, 2019).
    (15) Carvalho, P. O.; Cass, Q. B.; Calafatti, S. A.; Contesini, F. J.; Bizaco, R. Review- Alternatives for the Separation of Drug Enantiomers: Ibuprofen as a Model Compound. Braz. J. Chem. Eng. 2006, 23 (3), 291–300.
    (16) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/noyori/facts/ (accessed Nov 26, 2019).
    (17) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/summary/ (accessed Nov 26, 2019).
    (18) The Nobel Prize in Chemistry 2001 https://www.nobelprize.org/prizes/chemistry/2001/knowles/facts/ (accessed Nov 26, 2019).
    (19) Xie, R.; Chu, L.-Y.; Deng, J.-G. Membranes and Membrane Processes for Chiral Resolution. Chem. Soc. Rev. 2008, 37 (6), 1243.
    (20) Jane Li, Z.; Grant, D. J. W. Relationship Between Physical Properties and Crystal Structures of Chiral Drugs. J. Pharm. Sci. 1997, 86 (10), 1073–1078.
    (21) Sögütoglu, L.-C.; Steendam, R. R. E.; Meekes, H.; Vlieg, E.; Rutjes, F. P. J. T. Viedma Ripening: A Reliable Crystallisation Method to Reach Single Chirality. Chem. Soc. Rev. 2015, 44 (19), 6723–6732.
    (22) Separation of Enantiomers (Resolution of Racemates) - Chemgapedia http://www.chemgapedia.de/vsengine/vlu/vsc/en/ch/12/oc/vlu_organik/stereochemie/trennung_enantiomere.vlu.html (accessed Nov 27, 2019).
    (23) Manimaran, T.; Stahly, G. P.; Jr, R. C. H. Enantiomeric Resolution. US5248813A, September 28, 1993.
    (24) Rodrigo, A. A.; Lorenz, H.; Seidel‐Morgenstern, A. Online Monitoring of Preferential Crystallization of Enantiomers. Chirality 2004, 16 (8), 499–508.
    (25) Collet, A.; Brienne, M. J.; Jacques, J. Optical Resolution by Direct Crystallization of Enantiomer Mixtures. Chem. Rev. 1980, 80 (3), 215–230.
    (26) Pallavicini, M.; Bolchi, C.; Di Pumpo, R.; Fumagalli, L.; Moroni, B.; Valoti, E.; Demartin, F. Resolution of 5-Hydroxymethyl-2-Oxazolidinone by Preferential Crystallization and Investigations on the Nature of the Racemates of Some 2-Oxazolidinone Derivatives. Tetrahedron: Asymmetry 2004, 15 (10), 1659–1665.
    (27) Beilles, S.; Cardinael, P.; Ndzié, E.; Petit, S.; Coquerel, G. Preferential Crystallisation and Comparative Crystal Growth Study between Pure Enantiomer and Racemic Mixture of a Chiral Molecule: 5-Ethyl-5-Methylhydantoin. Chem. Eng. Sci. 2001, 56 (7), 2281–2294.
    (28) Maier, N. M.; Franco, P.; Lindner, W. Separation of Enantiomers: Needs, Challenges, Perspectives. J. Chromatogr., A, 2001, 906 (1–2), 3–33.
    (29) Afonso, C. A. M.; Crespo, J. G. Recent Advances in Chiral Resolution through Membrane-Based Approaches. Angew. Chem. Int. Ed. 2004, 43 (40), 5293–5295.
    (30) Jirage, K. B.; Martin, C. R. New Developments in Membrane-Based Separations. Trends Biotechnol., 1999, 17 (5), 197–200.
    (31) Gumí, T.; Valiente, M.; Palet, C. Characterization of a Supported Liquid Membrane Based System for the Enantioseparation of SR ‐Propranolol by N ‐Hexadecyl‐ L ‐hydroxyproline. Sep. Sci. Technol., 2005, 39 (2), 431–447.
    (32) Gumi, T.; Valiente, M.; Palet, C. Elucidation of -Propranolol Transport Rate and Enantioselectivity through Chiral Activated Membranes. J. Membr. Sci., 2005, 256 (1-2), 150-157.
    (33) Keurentjes, J. T. F.; Nabuurs, L. J. W. M.; Vegter, E. A. Liquid Membrane Technology for the Separation of Racemic Mixtures. J. Membr. Sci., 1996, 113 (2), 351–360.
    (34) Schurig, V. Separation of Enantiomers by Gas Chromatography. J. Chromatogr., A 2001, 906 (1–2), 275–299.
    (35) Nagata, Y.; Iida, T.; Sakai, M. Enantiomeric Resolution of Amino Acids by Thin-Layer Chromatography. J. Mol. Catal. B: Enzym., 2001, 12 (1–6), 105–108.
    (36) Francotte, E. R. Enantioselective Chromatography as a Powerful Alternative for the Preparation of Drug Enantiomers. J. Chromatogr., A, 2001, 906 (1–2), 379–397.
    (37) Wang, P.; Jiang, S.; Liu, D.; Wang, P.; Zhou, Z. Direct Enantiomeric Resolutions of Chiral Triazole Pesticides by High-Performance Liquid Chromatography. J. Biochem. Biophys. Methods, 2005, 62 (3), 219–230.
    (38) Péhourcq, F.; Jarry, C.; Bannwarth, B. Chiral Resolution of Flurbiprofen and Ketoprofen Enantiomers by HPLC on a Glycopeptide-Type Column Chiral Stationary Phase: LC Resolution of Flurbiprofen and Ketoprofen Enantiomers. Biomed. Chromatogr. 2001, 15 (3), 217–222.
    (39) Chankvetadze, B.; Kartozia, I.; Yamamoto, C.; Okamoto, Y. Comparative Enantioseparation of Selected Chiral Drugs on Four Different Polysaccharide-Type Chiral Stationary Phases Using Polar Organic Mobile Phases. J. Pharm. Biomed. Anal., 2002, 27 (3–4), 467–478.
    (40) Toda, F.; Tanaka, K. Optical Resolution by Inclusion Complex Formation. J. Inclusion Phenom., 1984, 2 (1–2), 91–98.
    (41) Mravik, A.; Böcskei, Z.; Katona, Z.; Markovits, I.; Pokol, G.; Menyhárd, D. K.; Fogassy, E. A New Optical Resolution Method: Coordinative Resolution of Mandelic Acid Esters. The Crystal Structure of Calcium Hydrogen (2R,3R)-O,O′-Dibenzoyl Tartrate–2(R)-(–)-Methyl Mandelate. Chem. Commun. 1996, No. 16, 1983–1984.
    (42) Mravik, A.; Böcskei, Z.; Katona, Z.; Markovits, I.; Fogassy, E. Coordination-Mediated Optical Resolution of Carboxylic Acids WithO, O′-Dibenzoyltartaric Acid. Angew. Chem. Int. Ed. Engl. 1997, 36 (1314), 1534–1536.
    (43) Liao, J.; Peng, X.; Zhang, J.; Yu, K.; Cui, X.; Zhu, J.; Deng, J. Facile Resolution of Racemic Terbutaline and a Study of Molecular Recognition through Chiral Supramolecules Based on Enantiodifferentiating Self-Assembly. Org. Biomol. Chem. 2003, 1 (6), 1080–1085.
    (44) Pallavicini, M.; Valoti, E.; Villa, L.; Piccolo, O.; Marchetti, F. Isopropylidene Glycerol Hydrogen Phthalate as a Resolving Agent: A Study of Its Diastereomeric Salts with (S)- and (R)-1-Phenylethylamine. Tetrahedron: Asymmetry 2000, 11 (9), 1957–1964.
    (45) Rainsford, K. D. Fifty Years since the Discovery of Ibuprofen. Inflammopharmacology 2011, 19 (6), 293–297.
    (46) Herzfeldt, C. D.; Kümmel, R. Dissociation Constants, Solubilities and Dissolution Rates of Some Selected Nonsteroidal Antiinflammatories. Drug Dev. Ind. Pharm. 1983, 9 (5), 767–793.
    (47) Potthast, H.; Dressman, J. B.; Junginger, H. E.; Midha, K. K.; Oeser, H.; Shah, V. P.; Vogelpoel, H.; Barends, D. M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ibuprofen. J. Pharm. Sci. 2005, 94 (10), 2121–2131.
    (48) Ashton, D.; Hilton, M.; Thomas, K. V. Investigating the Environmental Transport of Human Pharmaceuticals to Streams in the United Kingdom. Sci. Total Environ. 2004, 333 (1–3), 167–184.
    (49) Evans, A. M. Comparative Pharmacology of S(+)-Ibuprofen and (RS)-Ibuprofen. Clin Rheumatol 2001, 20, 9–14.
    (50) Rodríguez-Rojo, S.; Martín, A.; Simplício, A. L.; Matías, A.; Bánsághi, G.; Cocero, M. J. Separation of Ibuprofen Enantiomers by Diastereomic Salt Formation and Antisolvente Precipitation in Supercritical Carbon Dioxide https://www.semanticscholar.org/paper/SEPARATION-OF-IBUPROFEN-ENANTIOMERS-BY-DIASTEREOMIC-Rodríguez-Rojo-Martin/94144b0b04d16db3c63e6d05ca6965b07acda47b.
    (51) Bhattacharya, A.; Murphy, D. Temperature Selective Diastereo-Recognition (TSD): Enantiomeric Ibuprofen via Environmentally Benign Selective Crystallization. Org. Process Res. Dev. 2003, 7 (5), 717–722.
    (52) Sen, S. E.; Anliker, K. S. 1H NMR Analysis of R/S Ibuprofen by the Formation of Diasteriomeric Pairs: Microscale Stereochemistry Experiment for the Undergraduate Organic Laboratory. J. Chem. Educ. 1996, 73 (6), 569.

    QR CODE
    :::