跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李卓憲
Cho-hsien Li
論文名稱: 以液態電遷移製備鎂基化合物
Fabrication of Mg-based compound by Liquid Electromigration
指導教授: 劉正毓
Cheng-Yi Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 40
中文關鍵詞: 儲氫液態電遷移
外文關鍵詞: Hydrogen storage, liquid electromigration
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功地利用液態電遷移之方式製備出Mg2Ni化合物。將電流通過鎳/熔融鎂/鎳三明治結構,在熔融鎂中之鎳原子會受電遷移之效應被推向陽極界面且在熔融鎂/鎳界面生成厚的Mg2Ni化合物,而通電流之化合物厚度遠大於無電流之情形,這暗示電流可以增加界面化合物的生長。另外,從XRD分析,繞射圖中僅有(110)繞射峰,此顯示電遷移成長出之Mg2Ni化合物為單晶或有一優選方向之結構。由此觀察而知,在陽極界面生成之Mg2Ni化合物與電流方向有密切相關性。


    In this study, we have successfully produced Mg2Ni compound phase by using liquid-electromigration method. By applying a current flow through Ni/molten Mg/Ni sandwich structure, the Ni atoms in the molten Mg were electromigrated toward the anode interface and formed a thick layer of Mg2Ni compound at the anode molten Mg/Ni interface. The formation of the interfacial Mg2Ni compound is much larger than that in the no-current case. It implies that the growth of the interfacial Mg2Ni compound can be enhanced by the current-stressing. Remarkably, from XRD analysis, EM-grown Mg2Ni phase show a single crystal nature, only one single peak ((110) plane) appears in the XRD diffraction pattern. This observation suggests that the formation of EM-grown Mg2Ni compound at the anode interface highly corresponds to the direction of the electron flow.

    中文摘要..................................................i 英文摘要.................................................ii 致謝....................................................iii 目錄.....................................................iv 圖目錄...................................................vi 表目錄.................................................viii 第一章 緒論..............................................1 第二章 文獻回顧..........................................3 2.1 儲氫合金.........................................3 2.1.1 儲氫金屬化合物簡介..........................3 2.1.2 儲氫金屬化合物種類..........................4 2.1.3 儲氫合金之吸放氫原理........................7 2.1.4 儲氫合金之製備方式.........................9 2.2 電遷移(Electromigration)......................11 2.2.1 電遷移簡介.................................11 2.2.2 電遷移之理論基礎...........................11 2.3 液相電子磊晶(Liquid Phase Electroepitaxy).....14 2.3.1液相電子磊晶簡介...........................14 2.3.2液相電子磊晶原理...........................14 第三章 實驗方法與步驟...................................16 3.1 實驗材料........................................16 3.2 實驗樣品製作....................................16 3.2.1 鎂-鎳-鎂三明治結構.........................16 3.2.2 以液態電遷移製備鎂基化合物.................17 3.3 實驗樣品分析....................................18 第四章 結果與討論.......................................19 4.1 熔融鎂與鎳之界面反應............................19 4.2 電遷移效應對鎂/鎳界面反應之影響.................25 4.2.1 不銹鋼/液態鎂/鎳之三明治結構...............25 4.2.2 鎳/鎂/鎳三明治結構.........................28 4.3 電流密度之影響..................................33 4.4 電遷移效應對所生長化合物結晶性之影響............35 第五章 總結.............................................38 參考文獻 ................................................39

    [1] M. Abe, and T. Kuji, J. Alloy. Compd, accepted 18 December 2006.
    [2] N. Cui, B. Luan, H.K. Liu, H.J. Zhao, and S.X. Dou, J. Power Sources, 55, 263-267 (1995).
    [3] A. Borgschulte, U. Bosenberg, G. Barkhordarian, M. Dornheim, and R. Bormann, Catal. Today, 120, 262–269 (2007).
    [4] R. Janot, L. Aymard, A. Rougier, G.A. Nazri, and J.M. Tarascon, J. Phys. Chem. Solids, 65, 529–534 (2004)
    [5] G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, J. Alloy. Compd, 292, 247–252 (1999).
    [6] E. Grigorovaa, M. Khristova, M. Khrussanova, J.-L. Bobet, and P. Peshev, Int. J. Hydrogen Energ, 30, 1099 – 1105 (2005).
    [7] H. Y. Shao, Y. T. Wang, H. R. Xu, and X. G. Li, J. Solid State Chem, 178, 2211–2217 (2005).
    [8] K. C. Hong, J. Power Source, 96, 85-89 (2001).
    [9] A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, J. Power Source,118, 1-7 (2003).
    [10] M. Martin , C. Gommel , C. Borkhart , E. Fromm, J. Alloys and Compounds, 238, 193-201 (1996).
    [11] N. Armour, H. Sheibani, and S. Dost, Cryst. Res. Technol. 41, No. 10, 939 – 945 (2006).
    [12] C. Y. Liu, Lin Ke, Y. C. Chuang, and S. J. Wang, J. Appl. Phys, 100, 083702 (2006).
    [13] A. Kumar, M. He, Z. Chen, P.S. Teo, Thin Solid Films, 462-463,413-418 (2004).

    QR CODE
    :::