跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林秉聖
Ping-Sheng Lin
論文名稱: 逆向工程之三角網格處理研究
Research of Triangular mesh process in reverse engineering
指導教授: 賴景義
Jiing-Yih Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 94
中文關鍵詞: 三角網格網格處理
外文關鍵詞: mesh process, triangular mesh
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    電腦輔助設計(CAD)與電腦輔助製造(CAM)目前在工業界已廣泛被使用,在逆向工程方面,首先要將物體模型利用三次元掃描設備將其點座標資料掃進電腦並建成網格模型,在從網格模型建成曲面模型,而本研究的目的在探討一些處理三角網格的方法,來加速由網格模型轉成曲面模型的步驟,以加速逆向工程的速度。因此就首先設計了一個方便處理網格的資料格式,並應用此資料格式來處理網格平滑、網格孔洞徵測與縫補與網格減量,以達到加速處理網格轉化成曲面的步驟。
    本研究處理的問題包含:網格資料格式、網格平滑、網格孔洞偵測與縫補孔洞與網格減量。三角網格資料格式的建立,運用圖形點結構來建立動態的網格資料格式,並用此資料格式作網格處理;網格平滑方面,利用網格點資料投引的方式來達到平滑目的;網格孔洞偵測運用不共用邊來作收尋,縫補孔洞則使用剪耳法來作網格化;網格減量運用網格法向量差來作依據。


    ABSTRACT
    Computer aid design (CAD) and Computer aid Manufacture (CAM) are extensively used in industry. At first we should use 3D scanning (the measurement and modeling of shape and other visual properties) to modeling a physical model into triangular model in reverse engineering, then construct a surface model from triangular model, and this thesis has a goal to discuss several methods to deal with triangular mesh, and accelerates step in turning triangular model to surface model. Therefore designing a data structure at first to process triangular mesh easily, and use this data structure to smooth triangular mesh, detect holes and patch holes in triangular model.
    This thesis includes data structure, smooth, hole-detecting, hole-filling and decimation in triangular model. Use graphic node to build dynamic mesh data structure. and using this data structure to process triangular mesh. In smooth mesh, use mesh vertex projection to accomplish an intention. Using mesh edges to accomplish mesh hole-detecting. Use ear-cutting to do triangulation for hole-filling and take mesh normal difference to do mesh decimation.

    摘要 I ABSTRACT III 致謝 IV 目錄 I 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 論文架構 8 第二章 STL網格資料記錄與資料結構之規劃 9 2.1 前言 9 2.2 STL陣列資料結構規劃 9 2.2.1 以點為單位紀錄網格拓僕關係 10 2.2.2 加入邊的資料格式 10 2.3 STL節點圖形資料結構規劃 17 2.3.1節點資料結構 19 2.3.2節點搜尋周圍網格 21 2.3.3插入與刪除網格 23 第三章 STL網格平滑 9 3.1 前言 25 3.2 網格平滑步驟 26 3.2.1求網格點法向量 26 3.2.2搜尋中心點之周圍點 27 3.2.3將周圍點投影至中心點線上 27 3.3網格平滑分析與討論 32 第四章 多邊形點資料網格化與修補網格孔洞應用 39 4.1 前言 39 4.2 多邊形點資料之網格化 40 4.2.1 多邊形點資料網格化基本理論 40 4.2.2 改善剪耳法之方法 45 4-2 網格孔洞之修補 47 第五章 三角網格減量 61 5.1 前言 61 5.2 刪除網格處理 61 5.2.1 網格模板 62 5.2.2 刪除網格 69 5.2.3 刪除網格權重設定 75 5.3 刪除網格步驟 77 5.4網格減量之分析與討論 84 第六章 結論與未來展望 91 6.1 結論 91 6.2未來展望 92 參考文獻 93

    參考文獻
    1. M. Botsch, S. Steinberg, S. Bischoff and L. Kobbelt, “OpenMesh-a generic and efficient polygon mesh datastructure”, Computer Graphics and Multimedia RwTH Aachen .
    2. Levin,A., “Combined subdivision schemes for the design of surfaces satisfying boundary conditions on conditions” , Computer Aieded Geometric Design, No 16, pp. 345-354, 1999.
    3. Hoppe H, “Surface Reconstruction from Unorganized Points” , P.H.D of University of Washington ,1994.
    4. Kahler K, Haber J, and Hans-Peter S, “Dynamically refining animated triangle meshes for rendering” , Vistual Computer 2003.
    5. Gieng T.S., Hamann B, Kenneth I , L.Schussman and J.Trotts, “Smooth Hierarchical Surface Triangulation”, Center for Image Processing Integrated Computing Department , 1997.
    6. Davis J, R. Marschner , Garr M and Levoy M, “Filling Holes in Complex Surface using Volumetric Diffusion”, Computer Science Department , Stanford University.
    7. Y . H. Chen, C. T. Ng and Y. Z. Wang, “General of an STL File from 3D Measurement Data with User-Controlled Data Reduction” Department of Mechanical Engineering, The University of Hong Kong,1999.
    8. S. Gieng, B. Hamann, Member, IEEE, I. Joy, Memmber, IEEE, Gregory L.Schussman, IEEE, and Issac J. Trotts“Constructing Hierarchies for Triangle Meshes” IEEE transaction on visualization and computer graphics,vol.4,no2,april-june 1998.
    9. A.Ciampalini, P. Cignoni, C. Montani, R.Scopigno , “Multiresolution decimiation based on global error” ,Visual Computer 13:228-246, 1997.
    10. Eppstein D, “The Farthest Point Delaunay Triangulation Minimizes Angles”, Department of Information and Computer Science ,1990.
    11. Thomas, “A Review of Two Simple Polygon Triangulation Algorithms,” June 3,1998.
    12. Held M “Fast Industrial-Strength Triangulation of Polygons”, University Salzburg Austria, 1998.

    QR CODE
    :::