| 研究生: |
邢哲源 Hsing Che-Yuan |
|---|---|
| 論文名稱: |
檢驗奇摩拍賣平台 消費者跨商品類別的再購行為 Examine Consumer’s Repurchase Behavior across Product Categories of Yahoo! Auction Website |
| 指導教授: |
何靖遠
許秉瑜 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 再購行為 、RFM模型 、跨商品類別 |
| 外文關鍵詞: | Repurchase behavior, Across Product category, RFM model |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子商務的競爭激烈,唯有忠誠的顧客才能為業者創造利潤,因此線上的賣家與平台業者都需要關注顧客的再購行為。過去針對單一商品類別的研究發現買家過去的消費行為,亦即RFM模型的變數,包括最近一次交易間隔天數、購買次數、總交易金額和平均交易金額均會影響顧客的再購行為。本研究透過跨商品類別交易資料的收集,目的在描述買家在不同的商品類別的消費行為和再購行為,並探討RFM模型變數對於消費者再購行為的影響是否有所不同。除了考慮顧客對於賣家的再購行為之外,也考慮顧客對於拍賣平台的再購行為。
本研究蒐集自2014年10月至2015年3月奇摩拍賣所有商品類別的資料,包含買家和賣家配對的交易資料以及買家和平台配對的交易資料,使用羅吉斯迴歸分析探討RFM模型變數對賣家再購以及平台再購的影響。本研究發現所有商品類別的RFM變數均對賣家再購和平台再購有顯著的影響,也發現不同的商品類別,買家的再購行為表現會有所不同。本研究的主要貢獻為:(1)針對Yahoo!所有商品類別實證RFM模型可以用來預測消費者的再購行為;(2)消費者在Yahoo!的消費行為和再購行為的敘述統計可以做後續相關研究的對照和參考。
With the severe competition in e-commerce, only loyal customers benefit e-business’s profitability. This is why sellers and e-marketplace businesses must concern online consumers’ repurchase behavior. Previous studies, focusing on single product category, have shown that the past consumption behavior of customers, i.e., the RFM model variables including the elapsed time since last trading, the number of purchases, the total monetary and the average monetary of transactions, affect customer’s repurchase behavior. This study aims to describe both consumer’s purchasing behavior and repurchase behavior across product categories, and examine the differences in the effects of RFM variables on repurchase behavior from both the seller’s perspective and e-marketplace perspective.
In this study we collect all transactions data between buyers and sellers in all product categories of Yahoo! auction website from October 2014 to March 2015. Logistic regression analysis is used analyze the effects of RFM model variables on the repurchase behavior with respect to the seller and to the e-marketplace. We find that the effects of all RFM model variables are significant on the repurchase behavior from both perspectives across all product categories, and the differences in these effects are reported. The main contribution of this study are: (1) the appropriation of RFM model variables to predict the repurchase behavior is empirically examined and verified through all product categories of Yahoo! Auction website, (2) the descriptive statistics of the consumer’ s purchase behavior and repurchase behavior can be referenced by the relevant future studies in e-commerce.
英文文獻
[1] Reichheld, F. P., & Sasser, W. E. 1990. Zero defections: Quoliiy comes to services. Harvard business review, 68(5), 105-111.
[2] Reichheld, F. F., and Schefter, P., 2000, E-loyalty: Your Secret Weapon on the Web, Harvard Business Review, 78(4), 105-113.
[3] Hughes, A.M., 1996, Boosting Response with RFM, Marketing Tools, 3(3), 4-10.
[4] Phill Nelson, 1970, Information and Consumer Behavior, Journal of Political Economy, 78(2) 311-329
[5] Geng Cui, Hon-Kwong Lui, and Xiaoning Guo, 2012, The Effect of Online Consumer Reviews on New Product Sales, International Journal of Electronic Commerce 17(1), 39–57.
[6] Danny Weathers, Subhash Sharma and Stacy L. Wood, 2007, Effects of online communication practices on consumer perceptions of performance uncertainty for search and experience goods, Journal of Retailing 83 (4), 393–401.
[7] Oliver, R. L. 1980, A cognitive model of the antecedents and consequences of satisfaction decisions, Journal of marketing research, 460-469.
[8] Melvin T. Copeland, 1923, Relation of consumers' buying habits to marketing methods, Harvard Business Review 1, 282–289.
[9] Michael R. Darby, Edi Karni, 1973, Free Competition and the Optimal Amount of Fraud, Journal of Law and Economics 16, 67–86.
[10] Patrick E. Murphy and Ben M. Enis, 1986, Classifying Products Strategically, Journal of Marketing 50(3), 24-42.
[11] Melody Y. Kiang, T.S. Raghu and Kevin Huei-Min Shang, 2000, Marketing on the Internet — who can benefit from an online marketing approach? , Decision Support Systems 27, 383–393.
[12] F. Robert Dwyer, Paul H. Schurr, and Sejo Oh, 1987, Developing Buyer-Seller Relationships, Journal of Marketing 51(2), 11-27.
[13] Sewell, C. and P. Brown, 1990 ,Customers for Life: How to Turn That One-Time Buyer into A Lifetime Customer
[14] Posselt, T. and Gerstner, E., 2005, Pre-sale vs. Post-sale e-Satisfaction: Impact on Repurchase Intention and Overall Satisfaction, Journal of Interactive Marketing, 19(4), 35-47.
[15] Marcus, C. 1998, A practical yet meaningful approach to customer segmentation, Journal of Consumer Marketing, 15(5), 494-504.
[16] Jacoby, J., & Kyner, D. B. ,1973, Brand loyalty vs. repeat purchasing behavior. Journal of Marketing research, 1-9
[17] Oliver, R. L. 1999, Whence customer loyalty? Journal of Marketing, 63, 33–44
[18] Anderson, R. E., & Srinivasan, S. S. ,2003. E‐satisfaction and e‐loyalty: a contingency framework. Psychology & marketing, 20(2), 123-138.
[19] Paul, P., Pennell, M.L., and Lemeshow, S., 2013, “Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets,” Statistics in Medicine, 32(1), 67-80.
[20] Luo, J., Ba, S., & Zhang, H. 2012. The Effectiveness of Online Shopping Characteristics and Well-Designed Websites on Satisfaction. Mis Quarterly, 36(4), 1131-1144.
[21] Baron, R. M., & Kenny, D. A. 1986. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology, 51(6), 1173.
[22] Hayes, A. F., & Matthes, J. 2009. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior research methods, 41(3), 924-936.
中文文獻
[1] 何靖遠、賴宜楓(2011) , 網路拍賣再購行為的實徵研究 - 以台灣Yahoo!奇摩拍賣為例, 國立中央大學資訊管理學系碩士論文。
[2] 何靖遠、林暐勝(2012), 線上消費者購買行為之RFM分析─以“露天拍賣”的流行女裝為例, 國立中央大學資訊管理學系碩士論文。
[3] 何靖遠、廖致淵(2012), 線上消費者再購行為之預測-以Yahoo!奇摩拍賣女裝上衣為例, 國立中央大學資訊管理學系碩士論文。
[4] 何靖遠、余芷函(2014), 滾動式RFM基礎的線上再購行為預測模型─以台灣Yahoo!奇摩拍賣女裝類別為例, 國立中央大學資訊管理學系碩士論文。
[5] 何靖遠、陳慧玲、廖致淵(2014),線上消費者平台再購行為的RFM預測模型-以Yahoo!奇摩拍賣女裝為例,數據分析,9(1),頁1-23。
網路資料
[1] 台灣電子商務整合服務網(2014),2014年我國B2C網路商店經營及調查報告,取自 http://ecommerce.org.tw/getDownload.php?cno=1&autono=671