| 研究生: |
蕭文鏡 Wen-ching Hsiao |
|---|---|
| 論文名稱: |
利用無電鍍技術結合模板法製備純鎳金屬奈米管及空心球之研究 Electroless Synthesis of Large-Scale Pure Nickel Nanotubes and hollow spheres using Removable Templates |
| 指導教授: |
鄭紹良
Shao-Liang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 金屬空心球 、金屬奈米管 、無電鍍 |
| 外文關鍵詞: | metal hollow sphere, metal nanotube, electroless |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於先進奈米製程技術在未來奈米元件發展中扮演著關鍵的角色,而近年,中空結構之金屬奈米材料無論是在光電、化學感測以及觸媒上皆發現有相當大的應用潛力。因此如何大量製備與分析其特性即成了研究的重點。
本實驗的研究即整合以聯胺為還原劑之無電鍍鎳薄膜技術與移除模板法的方式,成功地大量製備出純鎳金屬之空心奈米材料。為了合成出ㄧ維之鎳金屬奈米管,模板部分首度採用具有均勻表面、高長寬比及熱穩定性良好之氧化矽奈米線來做為模板。經過APTMS官能基、活化、以及聯胺為還原劑之無電鍍鎳等步驟後,均勻氧化矽奈米線/純鎳金屬之核-殼奈米線結構即可完成。最後利用氫氟酸水溶液溶除中心氧化矽奈米線模板後,首度成功的製備出大面積純鎳金屬空心奈米管。金屬奈米管之內徑約30-150 nm,長度可達數十微米尺寸。此外,中空奈米球之合成,可利用均ㄧ粒徑之聚苯乙烯微奈米圓球來作為模板,藉由以聯胺為還原劑之無電鍍鎳薄膜技術並移除內部球核後,成功的製備出大面積之純鎳金屬空心球結構材料。
對於上述製備出之鎳金屬空心奈米材料,其表面形貌、晶體結構以及化學組成等,本研究利用SEM、TEM、EDS、SAED與HRTEM做有系統的鑑定分析。由所得之研究結果顯示,對於以均ㄧ粒徑之膠體粒子和高長寬比之氧化矽奈米線來作為模板,結合APTMS和聯胺所改進之無電鍍技術,可預期將可用以製備出其它各式高純度金屬中空奈米材料。
The advanced nanoscale fabrication technology is expected to play a key role in the applications of future nanodevices. Recently, the metal nanomaterials with hollow interiors have already been found their potential application in advanced optoelectronics, chemical sensors, and catalysts. Therefore, many research efforts have been dedicated to the large-scale syntheses of hollow nanomaterials.
In the present study, a new and facile route for the large-scale synthesis of high-purity hollow Ni metal nanomaterials has been developed by using the hydrazine-modified electroless Ni deposition processes with sacrificial templates. For the synthesis of the one-dimensional (1D) Ni metal nanotubes, amorphous silicon oxide (a-SiOx) nanowires are used as the sacrificial templates because it possesses the smooth surface, high aspect ratio, and good thermal stability. After the 3-aminopropyl-trimethoxysilane (APTMS) functionalization, activation, and hydrazine modified electroless Ni plating processes, a uniform a-SiOx/pure Ni core-shell nanowire structure was produced. By etching away the inner a-SiOx nanowire templates with dilute HF solution, pure hollow Ni nanotubes were then obtain. The inner diameters of the pure Ni nanotubes were about 30-150 nm and the length was several tens of micrometers. For the synthesis of the hollow metal spheres, monodispersed colloidal polystyrene spheres of equal size were served as the templates. After the hydrazine modified electroless Ni deposition and subsequent removal the inner PS sphere cores, large quantities of pure hollow Ni metal spheres were first successfully synthesized in this study.
The surface morphology, crystal structure, and chemical composition of the synthesized products were systematically characterized by SEM, TEM, SAED, EDS, and high-resolution TEM. The observed results present the exciting prospect that using the colloidal spheres of equal size and high-aspect-ratio a-SiOx nanowires as the removable templates, the noval APTMS and hydrazine modified electroless deposition technique promises to be applicable to the large-scale synthesis of a variety of high-purity hollow metal nanomaterials.
[1] F. M. F. Rhen, E. Backen, and J. M. D. Coey, “Thick-Film Permanent Magnets by Membrane Electrodeposition”, J. Appl. Phys. 97 (2005) 113908-113911.
[2] S. Araki, N. Mohri, Y. Yoshimitsu, and Y. Miyake, “Synthesis, Characterization and Gas Permeation Properties of a Silica Membrane Prepared by High-Pressure Chemical Vapor Deposition”, J. Membr. Sci. 290 (2007) 138-145.
[3] B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition Control and Hydrogen Permeation Characteristics of Sputter Deposited Palladium–Silver Membranes”, J. Membr. Sci. 161 (1999) 67-76.
[4] M. Saitou, I. Ota, A. Nakano, and S. M. A. Hossain, “Electrodeposition of Silver Thin Films with Shiny Appearances from an Electrolyte Comprising Silver Ferrocyanide-Thiocyanate and Antimony Potassium Tartrate”, Surf. Coat. Technol. 201 (2007) 6947-6952.
[5] L. Peverini, E. Ziegler, and I. Kozhevnikov, “Dynamic Scaling in Sputter Grown Tungsten Thin Films”, Thin Solid Films 515 (2007) 5541-5545.
[6] R. V. Wang, F. Jiang D. D. Fong, G. B. Stephenson, P. H. Fuoss, J. A. Eastman, S. K. Streiffer, K. Latifi, and C. Thompson, “In situ X-Ray Studies of Metal Organic Chemical Vapor Deposition of PbZ(x)Ti(1-x)O(3)”, Thin Solid Films 515 (2007) 5593-5596.
[7] C. M. Das, P. K. Limaye, A. K. Grover, and A. K. Suri, “Preparation and Characterization of Silicon Nitride Codeposited Electroless Nickel Composite Coatings”, J. Alloys Compd. 436 (2007) 328-334.
[8] A. Pineirio-Jimenez, C. Vilialobos-Gutierrez, M. H. Staia, and E. S. Puchi-Cabrera, “Tensile and Fatigue Properties of 6063-T6 Aluminium Alloy Coated with Electroless Ni-P Deposit”, Mater. Sci. Technol. 23 (2007) 253-263.
[9] W. X. Zhang, N. Huang, J. G. He, Z. H. Jiang, Q. Jiang, and J. S. Lian, “Electroless Deposition of Ni–W–P Coating on AZ91D Magnesium Alloy”, Appl. Surf. Sci. 253 (2007) 5116-5121.
[10] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, and T. Osaka, “All-Wet Fabrication Process for ULSI Interconnect Technologies”, Electrochim. Acta. 51 (2005) 916-920.
[11] J. L. Jiang, H. Q. Lu, L. X. Zhang, and N. P. Xu, “Preparation of Monodisperse Ni/PS Spheres and Hollow Nickel Spheres by Ultrasonic Electroless Plating”, Surf. Coat. Technol. 201 (2007) 7174-7179.
[12] K. Arima, H. Hara, J. Murata, T. Ishida, R. Okamoto, K. Yagi, Y. Sano,H. Mimura, and K. Yamauchi, “Atomic-Scale Flattening of SiC Surfaces by Electroless Chemical Etching in HF Solution with Pt Catalyst”, Appl. Phys. Lett. 90 (2007) 202106-202109.
[13] L. Y. Zhao, A. C. L. Siu, J. A. Petrus, Z. H. He, and K. T. Leung, “Interfacial Bonding of Gold Nanoparticles on a H-terminated Si(100) Substrate Obtained by Electro- and Electroless Deposition”, JACS 129 (2007) 5730-5734.
[14] J. Y. Lee, S. Horiuchi, and H. K. Choi, “Effects of Deposition Temperature and Chemical Composition on the ZnO Crystal Growth on the Surface of Pd Catalyst through Electroless Chemical Reaction”, Mater. Chem. Phys. 101 (2007) 387-394.
[15] J. B. Jun, M. S. Seo, S. H. Cho, J. G. Park, J. H. Ryu, and K. D. Suh, “Synthesis of Monodisperse Nickel-Coated Polymer Particles by Electroless Plating Method Utilizing Functional Polymeric Ligands”, J. Appl. Polym. Sci. 100 (2006) 3801-3808.
[16] W. Wang, N. Li, X. Li, W. Geng, and S. Qiu, “Synthesis of Metallic Nanotube Arrays in Porous Anodic Aluminum Oxide Template through Electroless Deposition”, Mater. Res. Bull. 41 (2006) 1417-1423.
[17] T. Sondergaard and S. I. Bozhevolnyi, “Metal Nano-strip Optical Resonators”, Opt. Express 15 (2007) 4198-4204.
[18] W. J. Cho and C. G. Ahn, “Thermal Annealing Effects on the Electrical Characteristics of the Back Interface in Nano-silicon-on-Insulator Channel”, Appl. Phys. Lett. 90 (2007) 143509-143511.
[19] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and Characterization of Nano-particulate PtCo Media for Ultra-High Density Perpendicular Magnetic Recording”, Nanotechnology 18 (2007) 205301-205309.
[20] M. Kiuchi, S. Matsui, and Y. Isono, “Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device”, J. Microelectromech. Syst. 16 (2007) 191-201.
[21] J. P. Edgeworth, N. R. Wilson, and J. V. Macpherson, “Controlled Growth and Characterization of Two-Dimensional Single-Walled Carbon-Nanotube Networks for Electrical Applications”, Small 3 (2007) 860-870.
[22] A. J. Hart, L. van Laake, and A. H. Slocum, “Desktop Growth of Carbon-Nanotube Monoliths with in situ Optical Imaging”, Small 3 (2007) 772-777.
[23] S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354 (1991) 56-58.
[24] V. M. Dubin, “Electroless Ni-P Deposition on Silicon with Pd Activation”, J. Electrochem. Soc. 139 (1992) 1289-1294.
[25] R. L. Jackson, “Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation”, 137 (1990) 95-101.
[26] R. Touir, H. Larhzil, M. EbnTouhami, M. Cherkaoui, and E. Chassaing, “Electroless Deposition of Copper in Acidic Solutions Using Hypophosphite Reducing Agent”, J. Appl. Electrochem. 36 (2006) 69-75.
[27] I. Baskaran, R. Sakthi Kumar, T. S. N. Sankara Narayanan, and A. Stephen, “Formation of Electroless Ni–B Coatings Using Low Temperature Bath and Evaluation of Their Characteristic Properties”, Surf. Coat. Technol. 200 (2006) 6888-6894.
[28] S. Haag, M. Burgard, and B. Ernst, “Pure Nickel Coating on a Mesoporous Alumina Membrane: Preparation by Electroless Plating and Characterization”, Surf. Coat. Technol. 201 (2006) 2166-2173.
[29] S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang, and S. J. Lin, “Integrated Electrochemical Deposition of Copper Metallization for Ultralarge-Scale Integrated Circuits”, J. Electrochem. Soc. 151 (2004) C81-C88.
[30] A. Vaskelis, R. Juskenas, and J. Jaciauskiene, “Copper Hydride Formation in the Electroless Copper Plating Process: in Situ X-ray Diffraction Evidence and Electrochemical Study”, Electrochim. Acta 43 (1998) 1061-1066.
[31] C. M. Liu, W. L. Liu, S. H. Hsieh, T. K. Tsai, and W. J. Chen, “Interfacial Reactions of Electroless Nickel Thin Films on Silicon”, Appl. Surf. Sci. 243 (2005) 259-264.
[32] N. Takano, N. Hosoda, T. Yamada, and T. Osaka, “Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution”, J. Electrochem. Soc. 146 (1999) 1407-1411.
[33] Z. Li, X. F. Qian, J. Yin, and Z. K. Zhu, “Gold Tubes Membrane with Novel Morphology Replicated from ZnO Template”, J. Solid State Chem. 178 (2005) 1765-1772.
[34] H. H. Hsu, C. W. Teng, S. J. Lin, and J. W. Yeh, “Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers”, J. Electrochem. Soc. 149 (2002) C143-C149.
[35] N. Takano, D. Niwa, T. Yamada, and T. Osaka, “Nickel Deposition Behavior on n-type Silicon Wafer for Fabrication of Minute Nickel Dots”, Electrochim. Acta 45 (2000) 3263-3268.
[36] H. J. Zhang, X. W. Wu, and Q. L. Jia, “Preparation and Microwave Properties of Ni-SiC Ultrafine Powder by Electroless Plating”, Mater. Des. 28 (2007) 1369-1373.
[37] S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, and E. Plichta, “Enhancement of Ion Transport in Polymer Electrolytes by Addition of Nanoscale Inorganic Oxides”, J. Power Sources 97-98 (2001) 644-648.
[38] S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, “Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions”, J. Am. Chem. Soc. 124 (2002) 7642-7643.
[39] P. Kohli, C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, and C. R. Martin, “DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity”, Science 305 (2004) 984-986.
[40] R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile Solid Phase Synthesis of Gold Nanoparticle Dimers Using an Asymmetric Functionalization Approach”, J. Am. Chem. Soc. 129 (2007) 5356-5357.
[41] J. Wang and T. Ito, “CVD Growth and Field Emission Characteristics of Nano-structured Films Composed of Vertically Standing and Mutually Intersecting Nano-carbon Sheets”, Diamond Relat. Mater. 16 (2007) 589-593.
[42] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89-90.
[43] Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SixGe1-x Substrate”, J. Phys. Chem. B 109 (2005) 21831-21835.
[44] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B: Condens. Matter 58 (1998) 16024-16026.
[45] S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth III Nature of Growth Sites”, Acta Metall. 4 (1956) 268-270.
[46] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224-228.
[47] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science 295 (2002) 2418-2421.
[48] R. Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional Ordered Arrays of Small Latex Particles”, Langmuir 11 (1995) 3333-3336.
[49] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of 2-D Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
[50] X. An, G. Meng, Q. Wei, M. Kong, and L. Zhang, “SiO2 Nanowires Growing on Hexagonally Arranged Circular Patterns Surrounded by TiO2 Films”, J. Phys. Chem. B 110 (2006) 222-226.
[51] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography Size Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999) 3854-3863.
[52] J. Rybczynsky, U. Ebels, and M. Giersig, “Large-Scale 2D Arrays of Magnetic Nanoparticles”, Colloids Surf., A 219 (2003) 1-6.
[53] A. Gil and F. Guitian, “Formation of 2D Colloidal Crystals by the Langmuir Blodgett Technique Monitored in Situ by Brewster Angle Microscopy”, J. Colloid Interface Sci. 307 (2007) 304-307.
[54] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, “Negative Dielectrophoretic Patterning with Colloidal Particles and Encapsulation into a Hydrogel”, Langmuir 23 (2007) 4088-4094.
[55] S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (001)Si Substrates”, J. Cryst. Growth 300 (2007) 473-477.
[56] A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, “The Processing and Characterization of Magnetic Nanobowls”, Thin Solid Films 505 (2006) 93-96.
[57] Y. Wang, S. B. Han , A. L. Briseno, R. J. G. Sanedrin, and F. M. Zhou, “A Modified Nanosphere Lithography for the Fabrication of Aminosilane/Polystyrene Nanoring Arrays and the Subsequent Attachment of Gold or DNA-Capped Gold Nanoparticles”, J. Mater. Chem. 14 (2004) 3488-3494.
[58] K. L. Lin and P. J. Lai, “Interdiffusion of the Electroless Ni-P Deposit with the Steel Substrate”, J. Electrochem. Soc. 137 (1990) 1509-1513.
[59] H. Shimauchi, S. Ozawa, K. Tamura, and T. Osaka, “Preparation of Ni-Sn Alloys by an Electroless-Deposition Method”, J. Electrochem. Soc. 141 (1994) 1471-1476.
[60] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee, and S. R. Lee, “Field Emission Characteristics of Electrochemically Synthesized Nickel Nanowires with Oxygen Plasma Post-Treatment”, Nanotechnology 17 (2006) 3506-3511.
[61] M. Watanabe, H. Yamashita, X. Chen, J. Yamanaka, M. Kotobuki, H. Suzuki, and H. Uchida, “Nano-sized Ni Particles on Hollow Alumina Ball Catalysts for Hydrogen Production”, Appl. Catal. B 71 (2007) 237-245.
[62] 楊聰仁,”無電鍍鎳及其應用”,國璋出版社 (1987)。
[63] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers-An Approach to SERS Substrates”, Science 267 (1995) 1629-1632.
[64] J. Gao, F. Tang, and J. Ren, “Electroless Nickel Deposition on Amino-Functionalized Silica Spheres”, Surf. Coat. Technol. 200 (2005) 2249-2252.
[65] H. Guo, Z. P. Qin, J. Wei, and C. X. Qin, “Synthesis of Novel Magnetic Spheres by Electroless Ni Coating of Polymer Spheres”, Surf. Coat. Technol. 200 (2005) 2531-2536.