| 研究生: |
宋國豪 Song,Guo-Hao |
|---|---|
| 論文名稱: |
雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測 |
| 指導教授: | 陳永富 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 古柏電子對 、超導體 、石墨烯 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製作雙局部閘極石墨烯/超導體/石墨烯元件,主要針對超導體與石墨烯界面的古柏電子對分離(Cooper Pair Splitting,CPS)傳輸效應進行探討。古柏電子對是超導體中超導能隙內的主要電荷載子,由兩個不同自旋方向的電子所形成的量子糾纏態,當一般金屬(N)與超導體(S)形成NSN元件時,古柏電子對其離開超導體的二個電子可分別傳向兩個不同的一般金屬,此電荷傳輸過程稱為CPS,亦稱為交叉式安德烈夫反射(Crossed Andreev Reflection,CAR)。我們使用石墨烯當作古柏電子對分離的二個通道,鋁作為超導金屬,透過兩個不同位置的下閘極調控二個石墨烯通道,將其中一個石墨烯調控成主要電荷載子為電洞(p型),另一個調控成主要電荷載子為電子(n型),期望當元件形成pSn元件時,能提升古柏電子對分離發生的機率。我們製作了兩種不同結構的元件,分別是相連式石墨烯元件與分離式石墨烯元件,並且成功利用下閘極調控對應位置的石墨烯載子型態與濃度,使用非局域電壓量測法與電流-電流相關性量測法來觀測古柏電子對分離現象,此外也改變元件溫度以及對元件施加磁場驗證超導性質,在我們的測量中並沒有看到古柏電子對分離現象,但觀測到另一個NSN元件中會發生的效應,彈性共同穿隧(Elastic Cotunneling,EC)。
We fabricated the graphene/superconductor/graphene device with two local gates, and mainly studied the Cooper pair splitting (CPS) in the system. The Cooper pair is a quantum entangled pair which consisted of two electrons with opposite spin direction. It is the major carrier in the superconducting energy gap of the superconductors. When two normal metals (N) and a superconductor (S) form an NSN device, the two electrons of a Cooper pair can leave superconductor and transport to two normal metals respectively. This transfer process called CPS, also known as crossed Andreev reflection, CAR. We used graphene as the two channels for CPS, and aluminum as the superconductor. Two local gates can tune carrier type and carrier concentration of the two graphene channels individually. We tuned one of the graphene channels as n-type whose major carrier is electron, and the other graphene channel as p-type whose major carrier is hole. And we expect this nSp configuration can promote the efficiency of CPS.
We fabricated two kinds of devices with different structure. One is a channel connected device: the two graphene channels are connected and the other is a channel separated device: the two graphene channels are separate. We successfully fabricate local gates to tune the major carrier type and the carrier concentration. Nonlocal voltage measurement and current-current correlation measurement are used for observe CPS. We verified superconductivity by changing the temperature and adding external magnetic field. But in the two different types of devices, we did not observe the CPS in our work. We only observed the elastic cotunneling (EC) which is another effect of the NSN devices.
1. Kes, D.v.D.a.P., Onnes,The discovery of superconductivity. Physics Today, 2010.
2. Meissner, W.a.R.O., Ein neuer effekt bei eintritt der supraleitfähigkeit. . Naturwissenschaften, 1933.
3. 張裕桓, 超導物理. 中國科學技術大學出版社, 1997.
4. Cooper, L.N., Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 1956. 104(4): p. 1189-1190.
5. Neil W. Ashcroft, N.D.M., Solid State Physics. Holt, Rinehart and Winston, 1976.
6. Kleine, A., Experiments on nonlocal processes in NS devices. University of Basel, 2010.
7. Blonder, G.E., M. Tinkham, and T.M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Physical Review B, 1982. 25(7): p. 4515-4532.
8. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
9. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern Physics, 2009. 81(1): p. 109-162.
10. Russo, S., et al., Experimental Observation of Bias-Dependent Nonlocal Andreev Reflection. Physical Review Letters, 2005. 95(2): p. 027002.
11. Schindele, J., A. Baumgartner, and C. Schönenberger, Near-Unity Cooper Pair Splitting Efficiency. Physical Review Letters, 2012. 109(15): p. 157002.
12. Veldhorst, M. and A. Brinkman, Nonlocal Cooper Pair Splitting in a pSn Junction. Physical Review Letters, 2010. 105(10): p. 107002.
13. Shih-Ming He, C.-Y.S., The synthesis technology for large-area and high quality of graphene film.
14. Syu, J.-Y., The investigation of doped graphene for high performance transparent conductive film. 2015.
15. Cherian, C.T., et al., ‘Bubble-Free’ Electrochemical Delamination of CVD Graphene Films. Small, 2015. 11(2): p. 189-194.
16. BlueFors, BF‐LD250 CRYOGEN‐FREE DILUTION REFRIGERATOR SYSTEM User manual. 2011.
17. Evertsson, J., et al., The thickness of native oxides on aluminum alloys and single crystals. Applied Surface Science, 2015. 349: p. 826-832.
18. Keithley, Model 2400 Series SourceMeter User's manual.