| 研究生: |
王秉承 Bing-Cheng Wang |
|---|---|
| 論文名稱: |
醇溶性富勒烯衍生物的摻雜對低溫製備TiO2電子萃取能力的影響 Effect of Doping of Alcohol-Soluble Fullerene Derivatives on Electron Extraction of TiO2 at Low Temperature |
| 指導教授: | 吳春桂 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 鈣鈦礦 、二氧化鈦 、富勒烯衍生物 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池(Perovskite Solar Cell,簡稱PSC),光電轉換效率最高達24.2%(與矽晶圓太陽能電池的效率差不多)。以低溫方式所製備的TiO2(Lt-TiO2)膜作為一般式PSC的電子傳遞層(electron transporting layer,ETL),雖然有利於低成本製造及軟性基材應用,但Lt-TiO2膜有高缺陷密度及低電子萃取能力之缺點,導致所組裝的一般式PSC有嚴重的遲滯現象,影響其商品化行程。本研究透過使用具有高導電度及醇溶性的富勒烯衍生物,如:C60-RT2、C60-RT6、C70-RT2作為添加劑,製備含富勒烯衍生物的TiO2的奈米複合物膜(Cx-RTy:Lt-TiO2)作為一般式PSC的電子傳遞層,結果以C60-RT6:Lt-TiO2為ETL之元件有最佳的光電轉換效率,C60-RT6的添加能增加Lt-TiO2 ETL的電子萃取能力、導電度,減少缺陷,增加緻密度及親水性。並使沈積在ETL上的鈣鈦礦(Psk)膜有較大顆粒。由於C60-RT6材料中胺基(R-NH3+)上的氫會與鈣鈦礦結構中I產生氫鍵作用力,因此沉積於C60-RT6:Lt-TiO2膜上的Psk膜的結晶度比沈積於Lt-TiO2上的高。不管C60-RT6:Lt-TiO2膜(含2.25 wt% C60-RT6的C60-RT6:Lt-TiO2)是在100℃或室溫下乾燥30分鐘所製備的,尤其為ETL所組裝成PSC元件的光電轉換效率分別為17.99%(室溫乾燥)及17.51%(100℃加熱乾燥)均比其相同條件下製備的純Lt-TiO2膜為ETL的元件之光電轉換效率分別為14.47%及15.52%高,且元件的遲滯現象小,在手套箱中的長時間穩定性也較好。
Perovskite Solar Cell (PSC) has a power conversion efficiency of up to 24.2% (close to the efficiency of silicon wafer based solar cells). The TiO2 (Lt-TiO2) film prepared by low temperature method used as the electron transporting layer (ETL) in the regular PSC has the advantage of low-cost fabrication and flexible substrate applicable, nevertheless, it also has defect density. Furthermore Lt-TiO2 also has low electron extraction ability, resulting in a serious current hysteresis of the corresponding regular PSC. In this study, the fullerene derivatives (such as C60-RT2, C60-RT6, and C70-RT2) with alcohol solubility were prepared to be an additive for Lt-TiO2 electron transporting material (ETM). The additive all improve the photovoltaic performance of Lt-TiO2 ETL and amongst these three fullerene derivatives, C60-RT6 has the best performance. Comparing to Lt-TiO2 film, C60-RT6:Lt-TiO2 nanocomposite film has better electron extraction ability、higher conductivity、less defects and more hydrophilic no matter the ETL was heated at 100°C or dried at ambient atmosphere for 30 minutes. As a result perovskite (Psk) film deposited on the C60-RT6:Lt-TiO2 nanocomposite film has larger particles and better crystallinity than that deposited on Lt-TiO2 ETL. The power conversion efficiencies of the regular PSC besed on C60-RT6:Lt-TiO2 nanocomposite ETL increases to 17.99% (when the ETL was dried at room temperature) and 17.51% (ETL was heated at 100°C) respectively which are higher than those (14.47% and 15.52%, respectively) of the cells based on pure Lt-TiO2 ETL prepared under the same conditions. At the same time the current hysteresis is smaller and the long-term stability in the glove box is better for the cell based on C60-RT6:Lt-TiO2 nanocomposite ETL compared to those using Lt-TiO2 ETLs.
[1] https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000549462_HC15591658U13131URXX0
[2] http://en.wikipedia.org/wiki/Gustav_Rose (2017 年 8 月 11 日)
[3] Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing“, Phys. Chem. Chem. Phys., 2015, 17, 19745-19750.
[4] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Il Seok , Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells”, Nature energy, 2018, 3, 682-689.
[5] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv, 2019, 5, 8925-8934.
[6] Chien-Hung Chiang, Chun-Guey Wu “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364.
[7] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519–522.
[8] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., “Dye-Sensitized Solar Cells”, Chem. Rev. 2010, 110, 6595-6663.
[9] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051.
[10] Kim, H, S.; Lee, C, R.; Im, J, H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Baker, R. H.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N.-G., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2012, 2, 591-597.
[11] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater, 2013, 25, 3727–3732.
[12] Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[13] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin M. K.; Gratzel, M., “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316–319.
[14] Chiang, C.-H.; Tseng, Z. –L.; Wu, C.-G., “Planar hetero-junction perovskite/PC71BM solar cells with efficiency over 16% via (2/1)-step spin-coating process”, J. Mater. Chem. A 2014, 2 15897 – 15903.
[15] Chiang, C.-H.; Nazeeruddin, M.-K.; Gratzel, M.; Wu, C.-G., “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[16] Jeon, N.- J.; Noh, J.- H.; Kim, Y.- C.; Yang, W.- S.; Ryu, S.; Seok, S, Il., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
[17] Chiang, C.-H.; Wu, C.-G., “Film grain-size related long-term stability of inverted perovskite solar cells”, ChemSusChem, 2016, 9, 2666 –2672.
[18] Dong Yang, Ruixia Yang, Jing Zhang, Zhou Yang, Shengzhong Liu and Can Li. “High efficiency flexible perovskite solar cells using superior low temperature TiO2”, Energy Environ. Sci, 2015, 8, 3208-3214.
[19] Fabrizio Giordano, Antonio Abate, Antonio Abate, Michael Saliba, Taisuke Matsui, Sang Hyuk Im, Shaik M. Zakeeruddin, Mohammad Khaja Nazeeruddin, Anders Hagfeldt and Michael Graetzel. “Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells”, Nature Communications, 2016, 7, 10379-10-385.
[20] Yaowen Li, Yue Zhao, Qi Chen, Yang (Michael) Yang, Yongsheng Liu, Ziruo Hong, Zonghao Liu, Yao-Tsung Hsieh, Lei Meng, Yongfang Li, and Yang Yang. “A multifunctional fullerene derivative for interface engineering in perovskite solar cells”, J. Am. Chem. Soc, 2015, 49, 15540-15547.
[21] Feilong Cai, Liyan Yang, Yu Yan, Jinghui Zhang, Fei Qin, Dan Liu, Yi-Bing Cheng, Yinhua Zhou and Tao Wang. “Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer”, J. Mater. Chem. A, 2017, 5, 9402–9411.
[22] Ya-Qing Zhou, Bao-Shan Wu, Guan-Hua Lin, Yang Li, Di-Chun Chen, Peng Zhang, Ming-Yu Yu, Bin-Bin Zhang, and Da-Qin Yun.“Enhancing performance and uniformity of perovskite solar cells via a solution-processed C70 interlayer for interface engineering”, ACS Appl. Mater. Interfaces, 2017, 9, 33810−33818.
[23] Tiantian Cao, Zhao-Wei Wang, Yijun Xia, Bo Song, Yi Zhou, Ning Chen, and Yongfang Li. “Facilitating electron transportation in perovskite solar cells via water-soluble fullerenol interlayers”, ACS Appl. Mater. Interfaces, 2016, 8, 18284–18291.
[24] Xiong Li, M. Ibrahim Dar, Chenyi Yi, Jingshan Luo, Manuel Tschumi, Shaik M. Zakeeruddin, Mohammad Khaja Nazeeruddin, Hongwei Han and Michael Grätzel. “Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides”, Nature Chemistry, 2015, 7, 703-711.
[25] Tiantian Cao, Peng Huang, Kaicheng Zhang, Ziqi Sun, Kai Zhu, Ligang Yuan, Kang Chen, Ning Chen and Yongfang Li. “Interfacial engineering via inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 3435–3443.